1、一次函数图象的应用(1)教学目标(一)教学知识点1.能通过函数图象获取信息,发展形象思维.2.能利用函数图象解决简单的实际问题.3.初步体会方程与函数的关系.(二)能力训练要求1.通过函数图象获取信息,培养学生的数形结合意识.2.根据函数图象解决简单的实际问题,发展学生的数学应用能力.3.通过方程与函数关系的研究,建立良好的知识联系.(三)情感与价值观要求通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识.教学重点一次函数图象的应用.教学难点正确地根据图象获取信息.教学方法尝试指导法.教具准备投影片两张:第一张:补充练习(记作6.5.1 A);第二张:
2、补充练习(记作6.5.1 B).教学过程.导入新课在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用.讲授新课一、做一做由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,回答下列问题:(1)干旱持续10天,蓄水量为多少?连续干旱23天呢?(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(3)按照这个规律,预计持续干旱多少天水库将干涸?师请大家根据图象回答问题,有困难的请
3、大家互相交流.生甲答:(1)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.当t=10时,V约为1000万米3.同理可知当t为23天时,V约为750万米3.生乙(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t的值.当V等于400万米3时,所对应的t的值约为40天.生丙水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求.当V为0时,所对应的t的值约为60天.二、练一练某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示.根据图象回答下列问题:(1)一箱汽油可供摩
4、托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x轴交点的横坐标即为摩托车行驶的最长路程.(2)x从0增加到100时,y从10开始减少,减少的数量即为消耗的数量.(3)当y小于1时,摩托车将自动报警.生答:(1)观察图象,得当y=0时,x=500因此一箱汽油可供摩托车行驶500千米.(2)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100千米消耗2升汽油.(3)当y=1时,x=450因此行驶了450千米后,摩托车将自动报警.课堂练习(一)随堂练习1.看
5、图填空(1)当y=0时,x=_ ;(2)直线对应的函数表达式是_ .解:(1)观察图象可知当y=0时,x=2;(2)直线过(2,0)和(0,1)设表达式为y=kx+b,得2k+b=0b=1把代入得 k=直线对应的函数表达式是y=x+12.议一议一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?师请大家根据刚做的练习来进行解答.生一元一次方程0.5x+1=0的解为x=2,一次函数y=0.5x+1包括许多点.因此0.5x+1=0是y=0.5x+1的特殊情况.师当一次函数y=0.5x+1的函数值为0时,相应的自变量的值即为方程0.5x+1=0的解.函数y=0.5x+1与x轴交点的横坐
6、标即为方程0.5x+1=0的解.(二)补充练习投影片(6.5.1 A)某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原来有40元,2个月后盒内有80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式(不要求写出x的取值范围);(2)在直角坐标系中作出该函数的图象;(3)观察图象回答:按上述方法,该同学经过几个月能存够200元.解:(1)y=40+20x(2)函数图象如下:(3)观察图象可知,该同学经过8个月能存够200元.投影片(6.5.1 B)全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2
7、,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,1002=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造
8、林等措施,每年改造4万千米2沙漠,每年沙化2万 千米2,实际每年改造面积2万千米2,由于(200176)2=12,故到第12年底,该地区的沙漠面积能减少到176万千米2.课时小结本节课主要应掌握以下内容:1.能通过函数图象获取信息.2.能利用函数图象解决简单的实际问题.3.初步体会方程与函数的关系.课后作业习题6.6.活动与探究下图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80 km.请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3
9、)请你分别求出表示自行车和摩托车行驶过程的函数表达式;(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式.自行车行驶在摩托车前面;自行车与摩托车相遇;自行车行驶在摩托车后面.解:(1)由图可以看出:自行车早出发3个小时;摩托车到达乙地较早,早了3个小时.(2)对自行车而言:行驶的距离是80 km,耗时8小时,速度是808=10(km/h);对摩托车而言:行驶的距离是80 km,耗时2个小时,速度是802=40(km/h);(3)设表示自行车行驶过程的函数解析式为y=kx,x=8时,y=8080=8k,k=10表示自行车行驶过程
10、的函数解析式为:y=10x;设表示摩托车行驶过程的函数解析式为y=ax+bx=3时,y=0,而x=5时,y=80;0=3a+b80=5a+b由得 b=3a由得 b=805a3a=805aa=40把a=40代入得b=120表示摩托车行驶过程的函数解析式为y=40x120(4)在3x5时间段内两车均行驶在途中自行车在摩托车前面:10x40x120两车相遇:10x=40x120自行车在摩托车的后面.10x40x120板书设计6.5.1 一次函数图象的应用(一)一、做一做(有关水库蓄水量与干旱时间的问题)二、练一练(根据图象求摩托车行驶路程与所耗油量的问题)三、议一议(方程0.5x+1=0与函数y=0.5x+1之间的关系)四、课堂练习五、课时小结六、课后作业