收藏 分销(赏)

九年级数学上册 2.3.1 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc

上传人:s4****5z 文档编号:7636633 上传时间:2025-01-10 格式:DOC 页数:5 大小:81.50KB
下载 相关 举报
九年级数学上册 2.3.1 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc_第1页
第1页 / 共5页
九年级数学上册 2.3.1 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc_第2页
第2页 / 共5页
九年级数学上册 2.3.1 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc_第3页
第3页 / 共5页
九年级数学上册 2.3.1 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc_第4页
第4页 / 共5页
九年级数学上册 2.3.1 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课题:2.3.1用公式法求解一元二次方程教学目标:1能运用公式法解数字系数的一元二次方程。不解方程,会用一元二次方程根的判别式判别方程是否有实数根和两个实数根是否相等2理解一元二次方程求根公式的推导过程,领悟所包含的数学思想和基本方法,培养熟练而准确的运算能力3通过公式的引入与推导和判别方程根的情况的过程中,培养学生数学推理的严密性及严谨性,寻求简便方法的探索精神及创新意识教学重、难点:重点:掌握公式和运用公式法解一元二次方程难点:求根公式的推导过程及应用课前准备:制作多媒体课件教学过程:一、创设情境,导入新课 (课件展示)活动内容:回答下列问题问题1:用配方法解方程2x2-9x+8=0问题2

2、:用配方法解方程x2+2bx+4ac=0(b2-4ac0)问题3:问题2中,如果没有限制条件b2-4ac0呢?处理方式:问题1、2由学生尝试用配方法解方程,并回顾用配方法解方程步骤;对于问题3先让学生分类讨论,如果b2-4ac0,就按上面的解题过程,如果b2-4ac0那么方程没有实数解设计意图:通过两个具体的题目回顾配方法的过程,回忆配方法的过程,尤其第二题为推导公式法做了铺垫,尤其是对判别式的讨论.二、探究学习,感悟新知探索:如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成这个问题活动1:自主推导求根公式。问题1:你能用配方法

3、解一元二次方程ax2+bx+c=0(a0)吗?处理方式:先鼓励学生自主推导求根公式, 并针对自己推导过程中预见的问题在小范围内自由研讨,特别是对配方后开方需满足的条件先由学生独立判断,再经过相互交流,学生将会印象深刻,有助于理解求根公式.老师巡回期间,进行引导、质疑、解惑,最后教师再利用课件演示推导过程. (课件展示)解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得x2+x+()2=-+()2, 即(x+)2= 当b2-4ac0, 直接开平方,得:x+=, 即x=, x1=,x2=当b2-4ac0 时方程没有实数解活动2:归纳总结一元二次方程的求根公式和公式法定义处

4、理方式:教师再利用出示课件形式归纳总结一元二次方程的求根公式和公式法定义学生看课本理解识记公式由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac0时,将a、b、c代入式子x=就得到方程的根 (2)x=叫做一元二次方程的求根公式(3)利用求根公式解一元二次方程的方法叫公式法注: (1)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac0时,可以用公式求出两个实数解;当b2-4ac0时,方程没有实数解就不必再代入公式计算了(2)把方程化为一般形式后,在确定a、b、c时

5、,需注意符号设计意图: 学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。三、例题解析,应用新知活动内容1:问题1:例1 解方程:x27x18=0问题2:试一试:通过例1你能总结用公式法解一元二次方程的一般步骤吗?处理方式:问题1先给学生10秒钟时间观察思考,再口述解题过程,教师板书.在学生口述过程中,教师可进行有针对性的提问教师分析板演解题过程:解:这里a=1,b=7,c=18b24ac=(7)241(18)=1210,x=,即:x1=9,x2 =-2问题2先由学生根据

6、例1解题过程独自思考,再分组交流分享,展示,其他组补充完善,最后教师以课件的形式梳理总结用公式法解一元二次方程的一般步骤 (课件展示) (1)把方程化为一般形式,进而确定a、b,c的值(注意符号) (2)求出b2-4ac的值(先判别方程是否有根)(3)在b2-4ac0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根活动内容2:例2 解方程:例3 解方程:(x-2)(1-3x)=6问题3:议一议:通过例1、例2、例3你有什么发现?与同伴交流处理方式:对于例2、例3鼓励学生仿照例1的解题过程尝试完成,对于例2的解学生可能不易理解:同一个数为什么算两个根?这里可以作为一种约定告诉学

7、生。对于问题3先鼓励学生独立完成,如果学生有困难,教师可以引导学生观察一元二次方程根的情况与b2-4ac的符号的关系,再与同伴分、展示,最后教师以课件的形式总结展示(课件展示)(1)b2-4ac叫做一元二次方程的根的判别式(2)由求根公式可知,b2-4ac0时一元二次方程有两个不相等实数根b2-4ac=0时一元二次方程有两个相等实数根b2-4ac0时一元二次方程没有实数根设计意图:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度四、强化训练,巩固新知问题1:判断下列方程是否有解:(学生口答)(1) 2x2+3=7x; (2)x2-7x

8、=18; (3)3x2+2x+1=0;(4)9x2+6x+1=0; (5)16x2+8x=3; (6) 2x2-9x+8=0问题2:一个直角三角形三边的长为三个连续偶数,求这个三角形的三边长处理方式:问题1学生迅速演算或口算出b2-4a,从而判断出根的情况。问题2学生口述,教师配同课件展示设计意图:第一题让学生熟练根的判别式的运用,加深对判别式的记忆和理解,第二题让学生熟悉解题格式步骤五、回顾反思,提炼升华提出问题:1一元二次方程ax2+bx+c=0(a0)的求根公式是什么?2如何判断一元二次方程根的情况?3用公式法解方程应注意的问题是什么?4你在解方程的过程中有哪些小技巧?处理方式:让学生在

9、四人小组中进行回顾与反思后,进行组间交流发言。鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识六、达标检测,反馈提高(多媒体出示)A组:1(2014自贡)一元二次方程x24x+5=0的根的情况是()A有两个不相等的实数根 B.有两个相等的实数根C. 只有一个实数根 D.没有实数根2解下列方程:(1)2x2+3= 7x; (2)4x2+14xB组:3(2014株洲)已知关于x的一元二次方程(a+c)x2+2

10、bx+(ac)=0,其中a、b、c分别为ABC三边的长(1)如果x=1是方程的根,试判断ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC的形状,并说明理由;(3)如果ABC是等边三角形,试求这个一元二次方程的根处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况学生根据答案进行纠错设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的七、布置作业,课堂延伸必做题:课本 43页 习题2.5 第1题(1)、(2)小题,第2题(1)、(2)小题选做题:课本 43页 习题2.5 第1题(3)小题,第2题(3)、(4)小题板书设计:2.3 用公式法求解一元二次方程(1)公式推导根的判别式例1例2例3投影区学生活动区

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
  • 九年级数学上册 2.3 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc九年级数学上册 2.3 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 九年级数学上册 2.3.2 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc九年级数学上册 2.3.2 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 九年级数学上册 第二章 一元二次方程 2.3 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc九年级数学上册 第二章 一元二次方程 2.3 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 九年级数学上册 第二章 一元二次方程3 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc九年级数学上册 第二章 一元二次方程3 用公式法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 秋九年级数学上册 2.3《用公式法求解一元二次方程》教案1 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc秋九年级数学上册 2.3《用公式法求解一元二次方程》教案1 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 秋九年级数学上册 2.3《用公式法求解一元二次方程》教案2 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc秋九年级数学上册 2.3《用公式法求解一元二次方程》教案2 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 秋九年级数学上册 2.3《用公式法求解一元二次方程》教案3 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc秋九年级数学上册 2.3《用公式法求解一元二次方程》教案3 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 九年级数学上册 2.3 用公式法求解一元二次方程教学设计 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc九年级数学上册 2.3 用公式法求解一元二次方程教学设计 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 九年级数学上册 2.3 用公式法求解一元二次方程教学设计2 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc九年级数学上册 2.3 用公式法求解一元二次方程教学设计2 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 九年级数学上册 2.2.1 用配方法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc九年级数学上册 2.2.1 用配方法求解一元二次方程教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
  • 搜索标签

    当前位置:首页 > 教育专区 > 其他

    移动网页_全站_页脚广告1

    关于我们      便捷服务       自信AI       AI导航        获赠5币

    ©2010-2025 宁波自信网络信息技术有限公司  版权所有

    客服电话:4008-655-100  投诉/维权电话:4009-655-100

    gongan.png浙公网安备33021202000488号   

    icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

    关注我们 :gzh.png    weibo.png    LOFTER.png 

    客服