1、23 公式法课 题23 公式法课型新授课教学目标1一元二次方程的求根公式的推导2会用求根公式解一元二次方程教学重点一元二次方程的求根公式教学难点求根公式的条件:b-4ac0教学方法讲练结合法教学后记教 学 内 容 及 过 程学生活动一、复习1、用配方法解一元二次方程的步骤有哪些?2、用配方法解方程:x27x18=0二、新授:1、推导求根公式:ax2+bx+c=0 (a0)解:方程两边都作以a,得 x2+x+=0移项,得: x2+x=配方,得:x2+x+()2=+()2即:(x+)2=a0,所以4a20当b24ac0时,得x+=x=一般地,对于一元二次方程ax2+bx+c=0 (a0)当b24a
2、c0时,它的根是 x=注意:当b24ac0x= 即:x1=9, x2 =2例:解方程:2x2+7x=4解:移项,得2x2+7x4=0 这里,a=1 , b=7 , c=4b24ac=7241(4)=810x=即:x1=,x2=4三、巩固练习:P58随堂练习:1、2四、小结:(1)求根公式:x= (b24ac0)(2)利用求根公式解一元二次方程的步骤五、作业:(一)P59 习题2.6 1、2(二)预习内容:P59P61板书设计:一、 复习二、 求根公式的推导三、 练习四、 小结五、 作业学生演板x1=9,x2=2注意:符号这里a=1,b=7,c=18学生小结步骤: (1)指出a、b、c (2)求出b24ac (3)求x (4)求x1, x2看课本P56P57,然后小结这节课我们探讨了一元二次方程的另一种解法公式法。 (1)求根公式的推导,实际上是“配方”与“开平方”的综合应用。对于a0,知4a0等条件在推导过程中的应用,也要弄清其中的道理。 (2)应用求根公式解一元二次方程,通常应把方程写成一般形式,并写出a、b、c的数值以及计算b4ac的值。当熟练掌握求根公式后,可以简化求解过程