资源描述
第三章 变量之间的关系
3.1 用表格表示的变量关系
【教学目标】
知识与技能
经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
过程与方法
在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
情感态度与价值观
学会用表格整理试验得出的数据,能从表格中获得变量之间关系的信息,并根据表格中的资料尝试对变化趋势进行初步的预测。
行为与创新
使学生在积极参与探索、交流的数学活动中,激发学生的求知欲,感受与他人合作的重要性。
【教学重难点】
重点
变量、自变量、因变量的概念
难点
会用表格表示变量之间的关系并会分析出自变量与因变量
【课前准备】
教师:课件
学生:练习本.
【教学过程】
复习回顾
一、创设情景引入
以地壳随时间推移而运动为例,让学生关注到我们生活在变化的世界中,很多东西都在发生变化,请学生列举一些日常生活中常见的发生变化的事物。如:随年龄的增长,身高、体重都发生了变化;随着时间的变化汽车行驶的路程也在变化;烧一壶水10分钟水开了,时间和水温的变化;……
以4人合作小组为单位,充分利用课前准备的任意三角形纸片,探索验证三角形内角和为180°的方法.然后各小组选派代表展示设计的方案并陈述理由.
二、应用练习 促进深化
1.儿童从出生到10岁的体重变化。
婴儿在6个月、1周岁、2周岁时体重分别大约是出生时的2倍、3倍、4倍,6周岁、10周岁时体重分别约是1周岁时的2倍、3倍。
(1)上述的哪些量在发生变化?
(2)某婴儿在出生时的体重是3.5千克,请把他在发育过程中的体重情况填入下表:
年龄
刚出生
6个月
1周岁
2周岁
6周岁
10周岁
体重/千克
(3)根据表中的数据,说一说儿童从出生到10周岁之间体重是怎样随着年龄的增长而变化的。
2.利用实验器材——小车、木板、秒表、调节高度的装置,让学生参与到“小车下滑的时间”的实验中,并一起完成表格。
利用同一块木板,测量小车从不同的高度下滑的时间,然后将得到的数据填入下表:
支撑物高度/厘米
10
20
30
40
50
60
70
80
90
100
小车下滑时间/秒
注:1.支撑物的高度需根据具体试验情况调整,保持等差(d)增加即可。
2.参考木板与小车间的摩擦程度和木板的长度确定试验中支撑物的起止高度。
根据上表回答下列问题:
(1)支撑物高度为70厘米时,小车下滑时间是多少?
(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110厘米时,t的值是多少。你是怎样估计的?
(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?
注:第(1)、(3)、(4)中的数据需根据具体试验中数据进行调整。
3.各小组选择在第一环节中举到的容易操作的试验内容,课后分组完成。
三、能力再提升
在“小车下滑的时间”中,
支撑物的高度h和小车下滑的时间t都在变化,它们都是变量(variable)。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是自变量(independent variale),小车下滑的时间t是因变量(dependent variale)。
在这一变化过程中,小车下滑的距离(木板的长度)一直没有变化。像这种在变化过程中数值始终不变的量叫做常量(constant)。
在“儿童从出生到10岁的体重变化”中,儿童的体重随年龄的变化而变化。年龄是自变量,体重是因变量。
借助表格,我们可以表示因变量随自变量的变化而变化的情况。在表格里,通常把自变量放在上(或左)面,把因变量放在下(或右)面。
1.议一议∶我国从1949年到2009年的人口统计数据如下(精确到0.01亿):
时间/年
1949
1959
1969
1979
1989
1999
2009
人口数量/亿
5.42
6.72
8.07
9.75
11.07
12.59
13.35
(1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?
(2)x和y哪个是自变量?哪个是因变量?
(3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?
(4)你能根据此表格预测2019年时我国人口将会是多少吗?
2.人口与环境是我们应该关心的问题,阅读下列材料完成相应的任务。
(1)据世界人口组织公布,地球上的人口1600年为5亿,1830年为10亿,1930年为20亿,1960年为30亿,1974年为40亿,1987年为50亿,1999年为60亿,而到2011年地球上的人口数达到了70亿。用表格表示上面的数据,并说一说世界人口是怎样随时间推移而变化的。
(2)表一:国家统计局对于2003年至2010年我国的环境污染治理投资费用的统计见下表:
时间/年
2003
2004
2005
2006
2007
2008
2009
2010
环境污染治理投资/亿元
1627.7
1909.8
2388
2566
3387.28
4490.3
4525.3
6654.2
表二:根据国家统计局对于全海域海水水质评价结果的统计,较清洁海域面积在2003至2010年间的变化情况如下表:
时间/年
2003
2004
2005
2006
2007
2008
2009
2010
较清洁海域面积/万平方公里
8.05
6.563
5.78
5.012
5.13
6.55
7.09
7.04
严重污染海域面积/万平方公里
2.4
3.206
2.927
2.837
2.97
2.53
2.97
4.8
阅读完两个表格,你有哪些感想?
3.研究表明,当钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:
氮肥施用量/千克/公顷
0
34
67
101
135
202
259
336
404
471
土豆产量/吨/公顷
15.18
21.36
25.72
32.29
34.03
39.45
43.15
43.46
40.83
30.75
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?
(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。
(4)粗略说一说氮肥的施用量对土豆产量的影响。
4.某电影院地面的一部分是扇形,座位按下列方式设置:
排数
1
2
3
4
座位数
60
64
68
72
(1)上述哪些量在变化?自变量和因变量分别是什么?
(2)第5排、第6排各有多少个座位?
(3)第n排有多少个座位?请说明你的理由。
四、归纳小结
1.本节课你有哪些收获?
2.在本节课的学习中,你还存在哪些疑问?
五、本课作业
1.习题4.1:P100-问题解决4、5
2.分小组设计一个小试验,用表格记录试验结果,并根据试验结果设计几个问题。如:
工具:一根针、一个装有一定量水的饮料瓶、一把刻度尺(固定在饮料瓶中)和一块秒表.
方法:将饮料瓶用针戳一个小眼,让水从小眼流走,对饮料瓶中的刻度尺每隔一分钟记录一次,将观察到的数据填入下表:
时间/分
0
1
2
3
4
5
6
7
8
刻度尺读数/厘米
(1)当你观察到第5分钟时,刻度尺读数是多少?
(2)如果用表示水流出的时间,表示刻度尺读数,随着逐渐变大,的变化趋势是什么?
(3)每增加1分钟,的变化情况相同吗?
(4)估计当=12时,的值是多少,你是怎样估计的?
又或者:点燃一支蜡烛,记录蜡烛的长度和燃烧时间(每3分钟)之间的关系。
课时作业设计
1.小明家住在22层,他上楼时,速度不变,楼层随着时间的增加而变多,在这一变化过程中,自变量是( )
A.速度 B.楼层 C.时间 D.无法确定
2.声音在空气中传播的速度y(m/s)与气温x(℃)有如下表所示的关系:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当气温是35℃时,音速y是多少?
答案:
1.C 2.(1)气温与音速,气温是自变量,音速是因变量.
(2)353m/s
展开阅读全文