收藏 分销(赏)

安徽省枞阳县钱桥初级中学八年级数学下册 18.1 勾股定理教案 (新版)沪科版.doc

上传人:s4****5z 文档编号:7636338 上传时间:2025-01-10 格式:DOC 页数:3 大小:91.50KB
下载 相关 举报
安徽省枞阳县钱桥初级中学八年级数学下册 18.1 勾股定理教案 (新版)沪科版.doc_第1页
第1页 / 共3页
安徽省枞阳县钱桥初级中学八年级数学下册 18.1 勾股定理教案 (新版)沪科版.doc_第2页
第2页 / 共3页
安徽省枞阳县钱桥初级中学八年级数学下册 18.1 勾股定理教案 (新版)沪科版.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、18.1 勾股定理一、教学目标 1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2培养在实际生活中发现问题总结规律的意识和能力。 3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、重点、难点 1重点:勾股定理的内容及证明。 2难点:勾股定理的证明。 三、例题的意图分析 例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步

2、让学生确信勾股定理的正确性。 四、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是

3、3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 五、例习题分析 例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。 求证:a2b2=c2。 分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 拼成如图所示,其等量关系为:4S+S小正=S大正 4 ab(ba)2=c2,化简可证。 发挥学生的想

4、象能力拼出不同的图形,进行证明。 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例2已知:在ABC中,C=90,A、B、C的对边为a、b、c。 求证:a2b2=c2。 分析:左右两边的正方形边长相等,则两个正方形的面积相等。 左边S=4 abc2 右边S=(a+b)2 左边和右边面积相等,即 4 abc2=(a+b)2 第2课时一、教学目标 1会用勾股定理进行简单的计算。 2树立数形结合的思想、分类讨论思想。 二、重点、难点 1重点:勾股定理的简单计算。 2难点:勾股定理的灵活运用。 三、例题的意图分析 例1(补充)使学

5、生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。 例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。 例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。 四、课堂引入 复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。 五、例习题分析 例1(补充)在RtABC,C=90 已知a=b=5,求c。 已

6、知a=1,c=2, 求b。 已知c=17,b=8, 求a。 已知a:b=1:2,c=5, 求a。 已知b=15,A=30,求a,c。 分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。已知两直角边,求斜边直接用勾股定理。已知斜边和一直角边,求另一直角边,用勾股定理的便形式。已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。 例2(补充)已知直角三角形的两边长分别为5和12,求第三边。 分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。例3(补充)已知:如图,等边ABC的边长是6cm。 求等边ABC的高。 求SABC。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服