资源描述
认识不等式
三、重点、难点分析:
重点:不等式的解集,关键是通过数轴直观地表现出不等式的解集。
难点:对不等式解集的含义的理解。
四、教学方法:探究、讨论式
五、教学过程
(一) 引例:
世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?
那么,究竟李敏的提议对不对呢?是不是真的浪费呢?
(二) 新课探究:
分析上面的问题
设有x人要进世纪公园,①若x≥30,应该如何买票?
②若x<30, 则又该如何买票呢?
结论:至少要有多少人进公园时,买30张票才合算?
概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,<,≥,≤.
2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.
3、不等式的分类:
⑴恒不等式:-7<-5,3+4>1+4,a+2>a+1.
⑵条件不等式:x+3>6,a+2>3,y-3>-5.
(三)、基础训练。
例1、用不等式表示:
⑴ a是正数;⑵ b不 是负数;⑶ c是非负数; ⑷ x 的平方是非负数;
⑸ x的一半小于-1;⑹ y与4的和不小于3.
注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;
⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系。
例2、用不等式表示:
⑴ a与1的和是正数;⑵ x的2倍与y的3倍的差是非负数;
⑶ x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.
例3、当x=2时,不等式x-1<2成立吗?当x=3呢?当x=4呢?
注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立。
⑵代入法是检验不等式的解的重要方法。
学生练习:课本P42练习1、2、3。习题8.1 1、2、3。
(四)能力拓展
例4:学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票。
⑴请问他们购买团体票是否比不打折而按45人购票便宜;
⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜。
解:⑴按实际45人购票需付钱_________ 元,如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜。
⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,
由上表可见,至少要__________人时进电影院,购团体票才合算。
答:
(五)课时小结:⑴不等式的定义,不等式的解。
⑵对实际问题中探索得到的不等式的解,不仅要满足数学式子,而且要注意实际意义.
六、板书设计
认识不等式
1、 不等式的定义:
2、 不等式的解:
(代入法检验不等式的解)
3、 不等式的分类:
引例:
例1:
例2:
例3:
例4:
七、作业布置:
1.用不等式表示:
(1)与1的和是正数; (2)的与的的差是非负数;
(3)的2倍与1的和大于3; (4)的一半与4的差的绝对值不小于.
(5)的2倍减去1不小于与3的和; (6)与的平方和是非负数;
(7)的2倍加上3的和大于-2且小于4; (8)减去5的差的绝对值不大于
2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)
3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.
展开阅读全文