1、9.5 因式分解(一)-提公因式法课 题课时分配本课(章节)需 11 课时本 节 课 为 第 7 课时因式分解(一)- 提公因式法教学目标1、 理解因式分解的意义及其与整式乘法的区别和联系2、 了解公因式的概念,掌握提公因式的方法3、 培养学生的观察、分析、判断及自学能力重 点掌握公因式的概念,会使用提公因式法进行因式分解。难 点1、正确找出公因式2、正确用提公因式法把多项式进行因式分解教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动一、情景设置:1.计算:2. 单项式乘多项式法则:a(bcd)= abacad.二、新课讲解:1.公因式左边是多项式,右边是a与(b +
2、c+d)的乘积,这里a是多项式ab +ac +ad的各项ab、ac 、ad都含有的因式,称为多项式各项的公因式。确定多项式的公因式的方法, 对数字系数取各项系数的最大公约数, 各项都含有的字母取最低次幂的积作为多项式的公因式, 公因式可以是单项式 , 也可以是多项式, 如:ax+bx 中的公因式是x. 多项式 a(x+y)+b(x+y) 的公因式是 (x+y). 如果多项式的第一项系数是负的, 一般要先提出 “一” 号, 使括号内的首项系数变为正, 在提出 “一” 号时, 注意括号里的各项都要变号.关键是确定多项式各项的公因式, 然后, 将多项式各项写成公因式与其相应的因式的积, 最后再提公因
3、式, 把公因式写在括号外面, 然后再确定括号里的因式, 这个因式 ( 括号里的 ) 的项数与原多项式的项数相同, 如果项数不一致就漏项了.完成“议一议”因式分解:把一个多项式写成几个整式积的形式叫做多项式的因式分解。例题1:把 分解因式例题2把下列各式分解因式: -2m3 + 8m2 - 12m完成“想一想”,要放手让学生去做 如果多项式的各项含有公因式,那么就可以把这个公因式提出来,把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法例题3:把下列各式分解因式: - 3x2 + 18x - 27; 18a2 - 50; 2x2 y - 8xy + 8y。练习:第82页
4、第1、2、3题小结:提公因式法分解因式的关键是确定公因式,当公因式是隐含的时候,多项式要经过适当的变形;变形的过程要注意符号的相应改变我们已经学习了提公因式法,要注意公因式法要一次提完。, 教学素材:A组题:1、 下列多项式因式分解正确的是 ( ) (A) (B) (C) (D) 2、(1) 的公因式是 (2) (3) 3、 把下列各式分解因式. (1) (2) (3) (4) 4、把下列各式分解因式:(1) 6p(p+q)-4p(p+q);(2) (m+n)(p+q)-(m+n)(p-q);(3) (2a+b)(2a-3b)-3a(2a+b)(4) x(x+y)(x-y)-x(x+y)2;5
5、、把下列各式分解因式:(1) (a+b)(a-b)-(b+a);(2) a(x-a)+b(a-x)-c(x-a);(3) 10a(x-y)2 - 5b(y-x);(4) 3(x-1)3y-(1-x)3z B组题:1、把下列各式分解因式:(1) 6(p+q)2-2(p+q)(2) 2(x-y)2-x(x-y) 2x(x+y)2-(x+y)32、先因式分解,再求值(1) x(a-x)(a-y)-y(x-a)(y-a),其中a=3,x=2,y=4;(2) -ab(a-b)2+a(b-a)2-ac(a-b)2, 其中a=3,b=2,c=1因式分解的意义及其与整式乘法的区别和联系完成“议一议”由学生自己先做(或互相讨论),然后回答, 学生回答完成“想一想”由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充让学生自己先做,同桌互相纠错,作业第87页第1、2题教 学 后 记