收藏 分销(赏)

秋七年级数学上册 3.1 一元一次方程及其解法教学设计 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc

上传人:s4****5z 文档编号:7635486 上传时间:2025-01-10 格式:DOC 页数:13 大小:96.50KB
下载 相关 举报
秋七年级数学上册 3.1 一元一次方程及其解法教学设计 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc_第1页
第1页 / 共13页
秋七年级数学上册 3.1 一元一次方程及其解法教学设计 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc_第2页
第2页 / 共13页
秋七年级数学上册 3.1 一元一次方程及其解法教学设计 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc_第3页
第3页 / 共13页
秋七年级数学上册 3.1 一元一次方程及其解法教学设计 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc_第4页
第4页 / 共13页
秋七年级数学上册 3.1 一元一次方程及其解法教学设计 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、3.1一元一次方程及其解法第1课时一元一次方程教学目标【知识与技能】1.使学生掌握方程的概念、一元一次方程的概念、方程的解.2.使学生初步了解方程的一般步骤,体会用方程解决问题的优越性.【过程与方法】1.经历具体问题的数量关系,形成方程的模型,使学生形成利用方程观察、认识现实世界的意识和能力.2.经历具体实例的抽象概括过程,进一步培养学生观察、分析、概括和转化的能力.3.通过分组合作学习活动,学会在活动中与人合作,并能与他人交流思维的过程与结果.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生实事求是的态度以及善于质疑和独立思考的良好学习习惯.教学重难点【重点】

2、方程、一元一次方程、方程的解的概念;以实际问题形成方程的模型、列方程.【难点】列方程解决实际问题.教学过程一、问题展示,引入新课师:同学们,上新课之前,我们先一起来看这一道题:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地.A、B两地间的路程是多少?师:请同学们用算术方法解决这个问题.学生独立思考后,与大家交流,老师再做简单讲解.师:如果设A、B两地相距xkm,你能分别列式表示客车和卡车从A地到B地的行驶时间吗?匀速运动中,时间=.根据问题的条件,客车和卡车从A地到B地的行驶时间,可以分别表示为h和h.

3、因为客车比卡车早1h经过B地,所以比小1,即-=1我们已经知道,方程是含有未知数的等式.等式中的x是未知数,这个等式是一个方程.(教学过程中对学生的回答,及时给予鼓励和表扬,激发他们对数学的兴趣)师:以后我们将学习如何解方程求出未知数x,从而得出A、B两地间的路程为420km,同学们,与算术方法相比较,用方程来解决问题具有什么特点?学生相互交流,说出自己对方程的感受.教师引出方程的概念.含有未知数的等式叫做方程.二、例题讲解师:下面我们再来一起做几个例题.【例】根据下列问题,设未知数并列出方程:(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700小时

4、,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时.【答案】(1)设正方形的边长为xcm,列方程得4x=24.(2)设x月后这台计算机的使用时间已达到2 450小时,那么在x月里这台计算机使用了150x小时,列方程得1 700+150x=2 450.教师总结:同学们在列方程时,一定要弄清方程两边的代数式所表示的意义,体会列方程所依据的等量关系.师:上面各方程都含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.那么如何从实际问题中列出方程呢?请同学们总结出列方程的一般步骤.(学生互相讨论,交流合作)师:列方程解应用题的一般步骤:实际问题一

5、元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种方法.师:当x=6时,4x的值为多少?生:24.师:也就是说x=6是方程4x=24的解.师总结:解方程就是求出使方程中等号左右两边相等的未值数的值,这个值就是方程的解.三、巩固练习1.已知下列方程:(1)3x-2=6(2)x-1=(3)+1.5x=8(4)3x2-4x=10(5)x=0(6)5x-6y=8(7)=3.其中是一元一次方程的是(填序号).2.下列数中,是方程5x-3=x+1的解的是()A.-1B.0C.1D.2(学生思考,教师提问.)【答案】1.(1)(3)(5)2.C四、提升练习1.在参

6、加2004年雅典奥运会的中国代表队中,羽毛球运动员有18人,比跳水运动员的2倍少4人,参加奥运会跳水的运动员有多少人?2.王玲今年12岁,她爸爸36岁,问再过几年,她爸爸的年龄是她年龄的2倍?(学生合作、讨论,教师再做讲解)【答案】1.112.12五、课堂小结这一节课你获得了哪些知识?有什么感受?(教师引导学生一起回顾这节课所学知识,鼓励学生用自己的语言进行回答)第2课时等式的性质教学目标【知识与技能】1.理解等式的基本性质.2.会根据等式的基本性质解方程.【过程与方法】经历探索等式的基本性质的过程,培养学生动手的能力以及对数学的兴趣.【情感、态度与价值观】通过由具体实验操作与合作探索的过程,

7、培养学生实事求是的态度.教学重难点【重点】等式的基本性质.【难点】用等式的基本性质解方程.教学过程一、温故知新师:同学们,你们知道什么叫方程吗?方程的解呢?那么什么又是等式?学生回答,教师点评.二、讲授新课1.合作探究.师:像m+n=n+m,x+2x=3x,33+1=52等都是等式.通过下面的实验,我们一起来探究等式的一些性质,同学们看,这是一台天平,请仔细观察实验过程.请同学们用语言叙述这个实验过程.生:天平两边分别放入一个铁球和砝码,天平平衡,再在两边都加上相同的木块,天平仍平衡,再拿掉木块天平仍平衡.师:这位同学回答得完全正确.如果我们把天平看成是等式,那么又会得到什么结论呢?小组讨论,

8、合作交流.师:总结得出等式的性质1:等式两边都加上(或减去)同一个数(或整式),结果仍是等式.师:请同学们继续观察下面的实验.请同学们用语言表达出这个实验过程.生:天平两边各放入一个小球和砝码,天平平衡,如果把两边小球和砝码的数量都变成原来的3倍,那么天平仍平衡.师:与上面一样,如果我们把天平看成是等式,那么又有什么结论呢?小组讨论,合作交流.师:我们可以得出等式的性质2:等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.性质3如果a=b,那么b=a.(对称性)例如,由-4=x,得x=-4.性质4如果a=b,b=c,那么a=c.(传递性)例如,如果x=3,又y=x,所以y=

9、3.在解题的过程中,根据等式的这一性质,一个量用与它相等的量代替,简称等量代换.三、例题讲解【例】利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-x-5=4.分析要使方程x+7=26转化为x=a的形式,要去掉方程左边的7,因此两边要同时减7,你会类似地思考另外两个方程如何转化为x=a的形式吗?【答案】(1)两边同时减7,得x+7-7=26-7,于是x=19.(2)两边同时除以-5,得=,于是x=-4.(3)两边同时加5,得-x-5+5=4+5,化简,得-x=9.两边同乘-3,得x=-27.四、巩固练习1.下列等式的变形正确的是()A.若m=n,则m+2a=n+2aB.

10、若x=y,则x+a=y-aC.若x=y,则xm=ym,=D.若(k2+1)a=-2(k2+1),则a=22.利用等式的基本性质解方程:(1)10x-3=9;(2)5x-2=8;(3)x-1=5.【答案】1.A2.(1)x=1.2(2)x=2(3)x=9五、课堂小结本节课主要学习了哪些知识?你在探索新知的过程中得到哪些启示?与同伴交流.第3课时解一元一次方程合并同类项与移项(1)教学目标【知识与技能】理解合并同类项法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法.【过程与方法】通过探索合并同类项法则的过程,培养学生观察、思考、归纳的能力,积累数学探究活动的经验.【情

11、感、态度与价值观】通过探索合并同类项法则,并进一步探索一元一次方程一般解法的过程,感受数学活动充满创造性,激发学生学习数学的兴趣.教学重难点【重点】合并同类项法则的探索及应用.【难点】合并同类项法则的理解和灵活运用.教学过程一、温故知新1.师:你们知道等式的基本性质是什么吗?生:性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.性质2:等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.性质3:如果a=b,那么b=a.(对称性)性质4:如果a=b,b=c,那么a=c.(传递性)2.利用等式的基本性质解方程:(1)2x+3=x+4;(2)5x+4=5-3

12、x.问题展示:问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?师:设前年购买计算机x台,那么去年购买计算机多少台?生:2x.师:今年购买计算机多少台?生:4x.师:题目中的等量关系是什么?师生共同分析,列出方程:x+2x+4x=140.用框图表示出解这个方程的具体过程:x+2x+4x=1407x=140x=20二、例题讲解【例】解下列方程:(1)2x-x=6-8;(2)7x-2.5x+3x-1.5x=-154-63.【答案】(1)合并同类项,得-x=-2.系数化为1,得x=4.(2)合并同类项,得6x=-78.系数化为

13、1,得x=-13.三、巩固练习解下列方程:1.3x+4x-2x=18-7.2.y-y+y=6-1.【答案】1.x=2.y=四、课堂小结这节课你学习了哪些知识?获得了哪些经验?第4课时解一元一次方程合并同类项与移项(2)教学目标【知识与技能】使学生掌握移项的概念,并用移项解方程.【过程与方法】根据具体问题的数量关系,形成方程模型,使学生形成利用方程的观点认识现实世界的意识和能力.【情感、态度与价值观】通过由具体实例的抽象概括的独立思考与合作学习的过程,培养学生实事求是的态度以及善于质疑和独立思考的良好学习习惯.教学重难点【重点】移项法则的探索及其应用.【难点】对移项法则的理解和灵活应用.教学过程

14、一、新课引入师:新课开始之前,我们先来看这样一个问题.问题展示:【例1】把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?问题分析:教师:设这个班有x名学生,如果每人分3本,这批书共本.生:(3x+20)本.师:每人分4本,这批书共本.生:(4x-25)本.师:这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?学生分组讨论,合作探究,教师总结.师:我们可以列出方程3x+20=4x-25师:我们可以利用等式的性质解这个方程,得3x-4x=-25-20.师:请同学们仔细观察上面的变形,你发现了什么?学生分组合

15、作、讨论,教师总结.师:上面的变形,相当于把原方程左边的20移到右边变成-20,把4x从右边移到左边变成-4x.即时引出移项的概念:把等式一边的某项变号后移到另一边,叫做移项.教师即时总结并强调移项要变号.【例2】解下列方程:(1)3x+7=32-2x;(2)x-3=x+1.【答案】(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)移项,得x-x=1+3.合并同类项,得-x=4.系数化为1,得x=-8.【例3】有一列数,按一定规律排列成1,-3,9,-27,81,-243,其中某三个相邻数的和是-1701,这三个数各是多少?师:同学们这列数的变化规律是什

16、么?生:前面一个数乘以-3得到后面的数.师:如果设第一个数是x,那么第二、三个数怎么表示呢?生:-3x,9x.师:请同学思考列出方程.生:x-3x+9x=-1701.【例4】某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t.新旧工艺的废水排量之比为25,两种工艺的废水排量各是多少?分析因为新旧工艺的废水排量之比为25,所以可设它们分别为2xt和5xt,再根据它们与环保限制的最大量之间的关系列方程.【答案】设新、旧工艺的废水排量分别为2xt和5xt.根据废水排量与环保限制最大量之间的关系,得5x-200=2x+100

17、.移项,得5x-2x=100+200.合并同类项,得3x=300.系数化为1,得x=100.所以2x=200,5x=500.答:新、旧工艺产生的废水排量分别为200t和500t.二、巩固练习解下列方程:1.4x-20-x=6x-5-x.2.32y+1=21y-3y-13.3.2|x|-1=3-|x|.【答案】1.x=-2.y=-13.x=-或三、课堂小结学习了移项法则后,你认为用逆运算的方法和用移项的方法解方程哪个更简便?对于解一元一次方程,你有了哪些新的领悟?第5课时解一元一次方程去括号与去分母(1)教学目标【知识与技能】掌握解含有括号的一元一次方程的方法,能用多种方法灵活地解一元一次方程.

18、【过程与方法】经历对一元一次方程解法的探究过程,深入理解等式基本性质在解方程中的作用,学会多角度寻求解决问题的方法.【情感、态度与价值观】通过探索含有括号的一元一次方程的解法,体验整体探索思想的意义,培养学生善于观察、总结的良好思维习惯.教学重难点【重点】含括号的一元一次方程的解法.【难点】结合方程的特点选择不同的方法解方程,并解释解法的合理性.教学过程一、例题讲解教师出示例题.【例1】解下列方程:(1)2x-(x+10)=5x+2(x-1);(2)3x-7(x-1)=3-2(x+3);(3)2(x-2)-3(4x-1)=9(1-x).【答案】(1)去括号,得2x-x-10=5x+2x-2.移

19、项,得2x-x-5x-2x=-2+10.合并同类项,得-6x=8.系数化为1,得x=-.(2)去括号,得3x-7x+7=3-2x-6.移项,得3x-7x+2x=3-6-7.合并同类项,得-2x=-10.系数化为1,得x=5.(3)去括号,得2x-4-12x+3=9-9x.移项,得2x-12x+9x=9+4-3.合并同类项,得-x=10.两边同除以-1,得x=-10.注意:(1)用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号;(2)-x=10不是方程的解,必须把x的系数化为1,才算完成解的过程.【例2】一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时

20、,已知水流的速度是3千米/小时,求船在静水中的速度.师:如果设船在静水中的平均速度为x千米/小时,那么请同学们回答下列问题.船顺流速度为多少?生甲:(x+3)千米/小时.师:逆流速度为多少?生乙:(x-3)千米/小时.师:那么这个方程的等量关系是什么?生丙:往返的路程相等.师生共同探讨,列出方程:2(x+3)=2.5(x-3)师:下面请一位同学上黑板写出这道题的解题过程.二、巩固练习解下列方程:1.2y+3=8(1-y)-5(y-2).2.3(2y+1)=2(1+y)+3(y+3).【答案】1.y=12.y=8三、课堂小结1.本节课主要学习了什么内容?2.在去括号时应注意什么?第6课时解一元一

21、次方程去括号与去分母(2)教学目标【知识与技能】会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法.【过程与方法】经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索.【情感、态度与价值观】通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次方程的过程中,体验“化归”的思想.教学重难点【重点】解一元一次方程的基本步骤和方法.【难点】含有分母的一元一次方程的解题方法.教学过程一、新课引入师:同学们,我们先来看这样一道题.教师出示问题:一个数,它的三分之二

22、,它的一半,它的七分之一,它的全部加起来总共是33,求这个数.师:设这个数为x,那么它的三分之二、二分之一怎么表示?生:x+x+x+x=33解这个方程关键是去分母,那么怎样才能去掉分母?根据是什么?学生合作探究,尝试去分母,并与同伴交流自己的解法是否正确.问题解答:根据等式的基本性质2,在方程两边乘以各分母的最小公倍数42,即可将方程化为熟悉的类型.28x+21x+6x+42x=1386合并同类项97x=1386系数化为1,x=答:所求的数是师生共同探讨解有分数系数的一元一次方程的步骤.-2=-5(3x+1)-102=(3x-2)-2(2x+3) 15x+5-20=3x-2-4x-615x-3

23、x+4x=-2-6-5+20 16x=7 x=师:同学们能不能总结解一元一次方程的一般步骤?学生分组讨论,合作交流.二、例题讲解【例】解下列方程:(1)-1=2+;(2)3x+=3-;(3)x-=-1.【答案】(1)去分母(方程两边同时乘4),得2(x+1)-4=8+(2-x).去括号,得2x+2-4=8+2-x.移项,得2x+x=8+2-2+4.合并同类项,得3x=12.系数化为1,得x=4.(2)去分母(方程两边同时乘6),得18x+3(x-1)=18-2(2x-1).去括号,得18x+3x-3=18-4x+2.移项,得18x+3x+4x=18+2+3.合并同类项,得25x=23.系数化为1,得x=.(3)去分母,得12x-2(10x+1)=3(2x+1)-12.去括号,得12x-20x-2=6x+3-12.移项,得12x-20x-6x=3-12+2.合并同类项,得-14x=-7.两边同除以-14,得x=.三、巩固练习解下列方程:1.-=1.2.-3=.【答案】1.x=-52.x=-四、课堂小结下面我们一起来回忆一下解一元一次方程的一般步骤.1.去分母.2.去括号.3.移项.4.合并同类项.5.系数化为1.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
  • 七年级数学上册 3.1 一元一次方程及其解法教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc七年级数学上册 3.1 一元一次方程及其解法教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 秋七年级数学上册 3.1 一元一次方程及其解法教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc秋七年级数学上册 3.1 一元一次方程及其解法教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 七年级数学上册 3.1 一元一次方程及其解法 3.1.1 一元一次方程教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc七年级数学上册 3.1 一元一次方程及其解法 3.1.1 一元一次方程教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 七年级数学上册 3.1 一元一次方程及其解法(2)教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc七年级数学上册 3.1 一元一次方程及其解法(2)教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 七年级数学上册 第3章 一次方程与方程组 3.1 一元一次方程及其解法教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc七年级数学上册 第3章 一次方程与方程组 3.1 一元一次方程及其解法教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 七年级数学上册 3.1 一元一次方程及其解法 3.1.4 用去括号法解一元一次方程教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc七年级数学上册 3.1 一元一次方程及其解法 3.1.4 用去括号法解一元一次方程教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 七年级数学上册 3.1 一元一次方程及其解法 3.1.3 用移项法解一元一次方程教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc七年级数学上册 3.1 一元一次方程及其解法 3.1.3 用移项法解一元一次方程教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 七年级数学上册 3.1 一元一次方程及其解法 3.1.5 用去分母法解一元一次方程教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc七年级数学上册 3.1 一元一次方程及其解法 3.1.5 用去分母法解一元一次方程教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 秋七年级数学上册 3.2 一元一次方程的应用教学设计(新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc秋七年级数学上册 3.2 一元一次方程的应用教学设计(新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 七年级数学上册 3.1 一元一次方程及其解法(第2课时)教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc七年级数学上册 3.1 一元一次方程及其解法(第2课时)教案 (新版)沪科版-(新版)沪科版初中七年级上册数学教案.doc
  • 搜索标签

    当前位置:首页 > 教育专区 > 初中数学

    移动网页_全站_页脚广告1

    关于我们      便捷服务       自信AI       AI导航        获赠5币

    ©2010-2025 宁波自信网络信息技术有限公司  版权所有

    客服电话:4008-655-100  投诉/维权电话:4009-655-100

    gongan.png浙公网安备33021202000488号   

    icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

    关注我们 :gzh.png    weibo.png    LOFTER.png 

    客服