1、分式教学过程一、复习1、引言:我们已经学过了整式,知道可用整式表示某些数量关系;学习了整式四则运算,在此基础上学习了一元一次方程的解法和列方程解应用题,但是有些数量关系,只用整式表示是不够的。2、例题:甲、乙两人做某种机器零件。已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。求甲、乙每小时各做多少个?。3、分析:设甲每小时做x个零件,那么乙每小时做(x-6)个。甲做90个所用的时间是90x(或 )小时,乙做60个的用的时间是60(x-6)(或 )小时,根据题意列方程=可以看出、都不是整式。列出的方程也不是已学过的方程。学习本章内容就可以正确认识这样的式子及方程,从而解
2、决问题。二、新授1分式在算术里,两个数相除可以表示用分数的形式。分数中的分子相当于被除数,分数中的分母相当于除数。因为零不能做除数,所以分数中的分母不能是零。在代数里,整式的除法也有类似的表示。如前面的例题中,(90x)小时可表示成小时,60(x-6)小时可表示成小时。又如n公顷麦田共收小麦m吨,平均每公顷产量(mn)吨,可用式子吨表示。再如轮船的静水速度为a千米/小时。水流速度为b千米/小时,轮船在逆流中航行s千米所需时间s(a-b)小时,可用式子小时表示。、的分母中都含有字母。一般地,用A、B表示两个整式,AB可以表示成的形式。如果B中含有字母,式子叫做分式。基中A叫做分式的分子,B叫做分
3、式的分母。可见,上列各式都是分式。由分式的意义可以知道:(1)分式是两个整式的商。其中分子是被除式,分母是除式。在这里分数线可理解为除号,还含有括号的作用。(2)分式的分子可以含字母,也可以不含字母,但分母必须含字母。式子、都不是分式,因为它们的分母都没有字母。(3)在分式里,分母代数式的值随式中字字母取值的不同而变化。字母所取的值有可能使分母为零。因为分式的分母相当于整式除法的除式,所以分母如果是零,则分式没有意义。因此在分式中,分母的值不能是零,例如在里,x0;在里,ab。 例1 当x取什么值时,下列分式有意义?(1); (2)。 解:(1)由x-20得x2,即当x2时,分式有意义。 (2
4、)由4x+10得x时,分式有意义。例2:当x是什么数时,分式的值是零?解:由分子x+2=0,得x=-2。而当x=-2时,分母2x-5=-4-50,所以当x=-2时,分式的值是零。问题:(1)分式的值为零就是分式没有意义吗?(2)只要分子的值是零,分式的值就是零吗?以为例回答此题。三、练习 练习: P60中练习1,2,3,4。四、小结1、本课学习了什么是分式。2、本课还学习了使分式有意义的条件及使分式为0的未知数值的求法。3、要特别注意分式中作为分母的代数式的值不得为零的教学。在分数里,分数的分母是一个具体的数,是否为零一目了然;而在分式里,要明确其是否有意义,就必须分析,讨论分母中所含字母不能取哪些值,以避免分母的代数式的值为零。五、作业 1、P61习题9.1 A组14。2、综合练习:同步练习。