1、111与三角形有关的线段111.1三角形的边1理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数(重点)2能利用三角形的三边关系判断三条线段能否构成三角形(重点)3三角形在实际生活中的应用(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学教师利用多媒体演示三角形的形成过程,让学生观察问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念 图中的锐角三角形有()A2个B3个C4个D5个解析:(1)以A为顶点的锐角三角形有ABC、ADC共2个;(2)以E为顶点的锐角三角形有EDC共1个所以图中锐角三角形的个数有213(个)故
2、选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有条线段,也可以与线段外的一点组成个三角形探究点二:三角形的三边关系【类型一】 判定三条线段能否组成三角形 以下列各组线段为边,能组成三角形的是()A2cm,3cm,5cmB5cm,6cm,10cmC1cm,1cm,3cmD3cm,4cm,9cm解析:选项A中235,不能组成三角形,故此选项错误;选项B中5610,能组成三角形,故此选项正确;选项C中113,不能组成三角形,故此选项错误;选项D中349,不能组成三角形,故此选项错误故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大
3、于第三条线段的长度即可【类型二】 判断三角形边的取值范围 一个三角形的三边长分别为4,7,x,那么x的取值范围是()A3x11 B4x7C3x11 Dx3解析:三角形的三边长分别为4,7,x,74x74,即3x11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边有时还要结合不等式的知识进行解决【类型三】 等腰三角形的三边关系 已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,
4、9,449,故4,4,9不能构成三角形,应舍去;499,故4,9,9能构成三角形,它的周长是49922.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形【类型四】 三角形三边关系与绝对值的综合 若a,b,c是ABC的三边长,化简|abc|bca|cab|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可解:根据三角形的三边关系,两边之和大于第三边,得abc0,bca0,cab0.|abc|bca|cab|bcacabcab3cab.方法总结:绝对值的化简首先要判断绝对值符号里面的式子
5、的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简三、板书设计三角形的边1三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形2三角形的三边关系:两边之和大于第三边,两边之差小于第三边本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力