1、3.3整式1.单项式【基本目标】1.要求学生能充分理解单项式的特征,能分辨一个代数式是不是单项式;2.能写出一个单项式的系数与次数;3.能根据条件,写出符合条件的单项式.【教学重点】能熟练写出一个单项式的次数与系数.【教学难点】能逆向写出符合条件的单项式.一、情境导入,激发兴趣1.什么样的式子是代数式?2.列代数式:(1)若正方形的边长为a,则正方形的面积是 ;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;(3)若m表示一个有理数,则它的相反数是 ;(4)小明从每月的零花钱中拿出x元钱捐给希望工程,一年下来小明共捐款 元.3.学生根据要求回答:(1)a2 (2)ah (
2、3)m (4)12x【教学说明】通过复习引入,让学生自主独立完成,既巩固了前面所学知识,又自然引入了本节课知识的探究,同时学生对以上问题解决起来难度不大,也增强了学生学习的信心.二、合作探究,探索新知1.单项式的概念观察思考:前面通过探究得到的代数式a2、ah、m、12x,它们的共同的特点是什么?小结:上面列出的代数式是由数字与字母的乘积组成的代数式,这样的代数式叫做单项式.注意:(1)单项式是只有数字与字母的积;(2)单独的一个数或一个字母也是单项式.【教学说明】先让学生观察思考,分析这些代数式共同点以及它们的组成部分,得出单项式的概念,同时为下一步学习系数与次数打基础.2.单项式的系数和次
3、数既然单项式是由数字与字母组成的,为了方便,我们有:(1)一个单项式中的数字因数叫做这个单项式的系数;(2) 一个单项式中的所有字母因数的指数和叫做这个单项式的次数,同时这个单项式也称为几次式.注意:(1)圆周率是常数;(即是数字而不是字母);(2)当一个单项式的系数是1或-1时,“1”通常省略;(3)单项式的系数是带分数时,通常写成假分数.【教学说明】在讲解单项式系数和次数概念时要结合具体的实例进行,使学生有一个直观的理解.单项式的次数是本节课的难点,一定要结合实例讲清楚,指出容易出错的地方,可以举出具体的容易犯错的实例来说明.三、示例讲解,掌握新知例1判断下列各式是否是单项式,如果不是,请
4、简要说明理由;如果是,请指出它的系数与次数.(1) x+1; (2);(3) r2; (4)a2b.【教学说明】判断一个式子是否是单项式,要紧紧扣住单项式的定义:由数字与字母的乘积组成的代数式,这样的代数式叫做单项式.所以(1)和(2)不是单项式,(3)和(4)是单项式,尤其要提醒学生注意(2)是数与字母的商 ,所以不是单项式.四、练习反馈,巩固提高1.在m,a,x2y,,3a+b,0中,是单项式的是 (只填序号)2.单项式的系数是 ,次数是 .3.若单项式(3m2)xyn1的系数是,次数是则n23m= .【教学说明】第1题中要注意不是单项式,教师要引导学生根据定义来进行区分,加深学生对单项式
5、定义的理解.第2题注意系数是数字部分,不要遗漏.第3题是相关概念的逆向运用,教师可做适当的提示.【答案】1. 2.- 3 3.12五、师生互动,课堂小结1.单项式的定义:由数字与字母的乘积组成的代数式,这样的代数式叫做单项式.注意:(1)单项式是只有数字与字母的积;(2)单独的一个数或一个字母也是单项式.2.单项式的系数和次数:(1)一个单项式中的数字因数叫做这个单项式的系数;(2) 一个单项式中的所有字母因数的指数和叫做这个单项式的次数,同时这个单项式也称为几次式.注意:(1)圆周率是常数;(即是数字而不是字母)(2)当一个单项式的系数是1或-1时,“1”通常省略;(3)单项式的系数是带分数时,通常写成假分数.【教学说明】教师以提问的方式引导学生回顾本节课所学知识和应该注意的问题,形成知识体系,便于学生理解和掌握,对需要注意的地方再次予以强调,加深学生的印象.完成本课时对应的练习.本节课的主要内容是在学习代数式中的单项式,学习分辨一个代数式是否是单项式,所以要掌握单项式的主要特征.在掌握此概念的基础上,理解单项式的系数与次数,要特别注意单项式的次数的教学,可以从正反两个方面进行训练,加深学生对单项式的次数的理解.