资源描述
15.1.1 从分数到分式
教学内容:从分数到分式
知识目标:使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.
能力目标:能熟练地求出分式有意义的条件,分式的值为零的条件.
情感目标:在土地沙化问题中,体会保护人类生存环境的重要性,培养学生严谨的思维能力.
教学重点:理解分式有意义的条件,分式的值为零的条件.
教学难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
教学方法:分组讨论.
教具准备:小黑板
教学过程
一、 情境引入:
面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?
这一问题中有哪些等量关系?
如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月;
根据题意,可得方程
二、解读探究
,,
认真观察上面的式子,方程有什么特点?
归纳:用A、B表示两个整式,A÷B就可以表示成的形式;如果B中含有字母,式子就叫做分式,其中A叫做分式的分子,B叫做分式的分母.
注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .
2. P3[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 才有意义.
三、例题讲解
例1. 当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
四、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 当x取何值时,下列分式有意义?
(1) (2) (3)
3. 当x为何值时,分式的值为0?
(1) (2) (3)
五、课堂小结
本节课你学到了哪些知识和方法?
1.分式与分数的区别. 2.分式何时有意义? 3.分式何时值为零?
六、课后作业
1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与y的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
从分数到分式
概念 例1 练习
例2
板书设计:
教学反思:
展开阅读全文