1、2.3相反数教学目的:1、使学生能理解“两数互为相反数”的意义;2、会写出已知数的相反数;3、懂得简单的简化符号的运算。教学分析: 重点:能准确写出任意数的相反数,对简化符号能正确应用。 难点:相反数的意义及有理数的组成。教学过程:一、知识导向:通过举出两个相反数,进行其表现形式的特点,及两数在数轴上的位置特点,来说明所谓相反数的特征及求法。二、新课拆析:1、设疑:其一:-3与3(+3)在数的形式上有何异同点?其二:-3与3(+3)在数轴上的位置有何异同点?其三:如果从数轴上的0点出发,分别向左右移动3个单位,会得到什么结果?2、两个数互为相反数的意义及相反数的求法:概括:只有符号不同的两个数
2、称互为相反数特点:在数轴上表示互为相反数的两个数的点分别位于原点的旁,且与原点的距离相等求法:通常在一个数的前面添上“-”号,得到的这个新数表示原数的相反数,即-a表示a的相反数 同样,在一个数前面添上“+”号,表示这个数本身概括:正数的相反数是负数 零的相反数是零(即零的相反数是其本身) 负数的相反数是正数置疑:一个数的相反数与其本身的大小关系?例:分别写出下列各数的相反数: 5、-7、+11.2 例:化简下列各数: (1) -(+10) (2) +(-0.15) (3) +(+3) (4) -(-20)三、巩固训练:P28 exc1、2、3四、知识小结:通过对相反数的学习,必须掌握两个数互为相反数的意义,能准确地写出任意一个有理数的相反数。五、家庭作业:P28 1、2、3、4六、每日预题:1、观察-6、+6与数轴原点的位置关系,分别说出两数与原点的距离。2、什么是绝对值?如何求任何一个数的绝对值?