资源描述
2.4 回顾与思考教案
知识与技能目标:
1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式。
2.熟悉本章的知识结构图。
过程与方法目标:
1. 通过知识结构图的教学,培养学生归纳总结能力。
2. 在例题的教学过程中培养学生分析问题和解决问题的能力.
情感态度与价值观目标:
1. 通过因式分解综合练习,提高学生观察、分析能力。
2. 通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识。
教学重点
复习综合应用提公因式法,运用公式法分解因式.
教学难点
利用分解因式进行计算及讨论.
教学方法
师生共同讨论法.
教师引导,主要由学生分组讨论得出结果.
教具准备
教学过程
Ⅰ.创设问题情境,引入新课
前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.今天,我们来综合总结一下.
Ⅱ.讲授新课
(一)讨论推导本章知识结构图
请大家先回忆一下我们这一章所学的内容有哪些?
(1)有因式分解的意义,提公因式法和运用公式法的概念.(2)分解因式与整式乘法的关系.(3)分解因式的方法.
能否把本章的知识结构图绘出来呢?(若学生有困难,给予帮助)
(二)重点知识讲解
1.举例说明什么是分解因式.
如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2)
把多项式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式.
学习因式分解的概念应注意以下几点:
(1)因式分解是一种恒等变形,即变形前后的两式恒等.
(2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止.
2.分解因式与整式乘法有什么关系?
分解因式与整式乘法是两种方向相反的变形.如:ma+mb+mc=m(a+b+c),从左到右是因式分解,从右到左是整式乘法.
3.分解因式常用的方法有哪些?
提公因式法和运用公式法.
4.例题讲解
例1 下列各式的变形中,哪些是因式分解?哪些不是?说明理由.
(1)x2+3x+4=(x+2)(x+1)+2;(2)6x2y3=3xy·2xy2;
(3)(3x-2)(2x+1)=6x2-x-2;(4)4ab+2ac=2a(2b+c)。
例2 将下列各式分解因式.
(1)8a4b3-4a3b4+2a2b5;(2)-9ab+18a2b2-27a3b3;
(3)-x2;(4)9(x+y)2-4(x-y)2;
(5)x4-25x2y2;(6)4x2-20xy+25y2;
(7)(a+b)2+10c(a+b)+25c2.
例3 把下列各式分解因式:
(1)x7y3-x3y3;(2)16x4-72x2y2+81y4。
从上面的例题中,大家能否总结一下分解因式的步骤呢?
分解因式的一般步骤为:
(1)若多项式各项有公因式,则先提取公因式.
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.
(3)每一个多项式都要分解到不能再分解为止.
Ⅲ.课堂练习
1.把下列各式分解因式
(1)16a2-9b2;(2)(x2+4)2-(x+3)2;
(3)-4a2-9b2+12ab;(4)(x+y)2+25-10(x+y)
2.利用因式分解进行计算
(1)9x2+12xy+4y2,其中x=,y=-;
(2)()2-()2,其中a=-,b=2.
Ⅳ.课时小结
1.共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解.
2.利用因式分解简化某些计算.
Ⅴ.课后作业
复习题 A组
求满足4x2-9y2=31的正整数解.
VI板书设计
2.6回顾与思考
一、1.讨论推导本章知识结构图
2.重点知识讲解
(1)举例说明什么是因式分解.
(2)分解因式与整式乘法有什么关系?
(3)分解因式常用的方法有哪些?
(4)例题讲解(例1、例2、例3)
(5)分解因式的一般步骤
二、课堂练习
四、课后作业
展开阅读全文