资源描述
山东省临沭县第三初级中学八年级数学上册《15.2.2完全平方公式》教案 人教新课标版
课 题
主备人
教学目标
完全平方公式的推导及其应用.完全平方公式的几何解释.视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点
完全平方公式的推导过程、结构特点、几何解释,灵活应用
课时分配
2课时
班 级
教学过程
设计意图
第一课时
(一) 提出问题,学生自学
1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______; (m+2)2=_______;
(2)(p-1)2=(p-1)(p-1)=________; (m-2)2=_______;
2.学生探究【1】
3.得到结果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)= m2+4m+4
(2)(p-1)2=(p-1)(p-1)= p2-2p+1
(m-2)2=(m-2)(m-2=m2-4m+4
4.分析推广:结果中有两个数的平方和,而2p=2·p·1,4m=2·m·2,恰好是两个数乘积的二倍。(1)(2)之间只差一个符号。
推广:计算(a+b)2=_____ ___ (a-b)2=_____ ___ 【2】
(二) 得到公式,分析公式
1.结论: (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 即:
两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
2.几何分析:【3】
图(1),可以看出大正方形的边长是a+b,它是由两个小正方形和两个矩形组成,所以大正方形的面积等于这四个图形的面积之和.【4】
(三)运用公式
设计意图
已知,求和的值
已知 ,求和 的值
附加:证明能被4整除
(五)小结:利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算
作业
板书设计
§15.2.2 完全平方公式
一、去括号法则:a+(b+c)=a+b+c
a-(b+c)=a-b-c
添括号法则:a+b+c=a+(b+c) a+b+c=a-(-b-c)
1.填空:(略) 2.判断下列运算是否正确:
(1)方法一:用去括号法则验证.方法二:用添括号法则验证.
二、乘法公式的深化应用.
例:计算(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)
教学反思
(1)切勿把此公式与平方差公式混淆,而随意写.
(2)切勿把“乘积项”2ab中的2丢掉.
(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.
预习要点
展开阅读全文