1、最大面积是多少教学目标: 知识与技能能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值 过程与方法1通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力2通过运用二次函数的知识解决实际问题,培养学生的数学应用能力 情感态度与价值观1经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值2能够对解决问题的基本策略进行反思,形成个人解决问题的风格3进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有
2、初步的创新精神和实践能力重点难点重点:1经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值2能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题难点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积的问题教学过程引入新课上节课我们利用二次函数解决了最大利润问题,知道了求最大利润就是求二次函数的最大值,实际上就是利用二次函数来解决实际问题解决这类问题的关键是要审清题意,明确要解决的是什么,分析问题中各个量之间的关系,建立数学模型
3、。在此基础上,利用我们所学过的数学知识,逐步得到问题的解答过程本节课我们将继续利用二次函数解决最大面积的问题活动内容:由四个实际问题构成1问题一:如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上(1)设长方形的一边ABx m,那么AD边的长度如何表示?(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?问题一的设计目的:对于这个问题,教师将其作为例题,不论是对问题本身的分析,还是具体的解法过程,都将作出细致、规范的讲解和示范。具体的过程如下:分析:(1)要求AD边的长度,即求BC边的长度,而BC是EBC中的一边,因此可以用三角形相似求出BC
4、由EBCEAF,得即所以ADBC(40x)(2)要求面积y的最大值,即求函数yABADx(40x)的最大值,就转化为数学问题了下面请小组开始讨论并写出解题步骤(1)BCAD,EBCEAF又ABx,BE40x,BC(40x)ADBC(40x)30x(2)yABADx(30x)x230x(x240x400400)(x240x400)300(x20)2300当x20时,y最大300即当x取20m时,y的值最大,最大值是300m22问题二:将问题一变式:“设AD边的长为x m,则问题会怎样呢?”解:DCAB,FDCFAEADx,FD30xDC(30x)ABDC(30x)yABADx(30x)x240x
5、(x230x225225)(x15)2300当x15时,y最大300即当AD的长为15m时,长方形的面积最大,最大面积是300m23问题三:对问题一再变式如图,在一个直角三角形的内部作一个矩形ABCD,其中点A和点D分别在两直角边上,BC在斜边上.(1).设矩形的一边BC=xm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?4问题四:某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?分析:x为半圆的半径,也是矩形
6、的较长边,因此x与半圆面积和矩形面积都有关系要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xyx2最大,而由于4y4x3xx7x4yx15,所以y面积Sx22xyx22xx23.5x27.5x,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可解:7x4yx15,y设窗户的面积是S(m2),则Sx22xyx22xx23.5x27.5x3.5(x2x)3.5(x)2当x1.07时,S最大4.02即当x1.07m时,S最大4.02m2,此时,窗户通过的光线最多课堂练习1. 用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖
7、墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?MABCDPQR2. 正方形ABCD边长5cm,等腰三角形PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一直线l上,当C、Q两点重合时,等腰PQR以1cm/s的速度沿直线l向左方向开始匀速运动,ts后正方形与等腰三角形重合部分面积为Scm2,解答下列问题:(1)当t=3s时,求S的值;(2)当t=3s时,求S的值;(3)当5st8s时,求S与t的函数关系式,并求S的最大值。板书设计1 问题一 2问题二 3问题三 4问题四课堂小结本节课我们进一步学习了用二次函数知识解决最大面积的问题,增强了应用数学知识的意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学建模思想和数学知识的应用价值课后作业习题28 1、2教学反思