1、反比例函数的图象与性质教学目标【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】观察、比较、合作、交流、探索.【情感态度】通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.教学过程一、情景导入,初步认知你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.二、思考探究,获取新知探究1:反比例函数图象的画法画出反比例函数
2、y=的图象分析画出函数图象一般分为列表、描点、连线三个步骤.(1)列表:取自变量x的哪些值?x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(6,1)、(3,2)、(2,3)等(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支这两个分支合起来,就是反比例函数的图象思考:(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?(2)这两条曲线会与x轴、y轴相交吗?为什
3、么?探究2:反比例函数所在的象限画出函数y=的图形,并思考下列问题:(1)函数图形的两个分支分别位于哪些象限?(2)在每一象限内,函数值y随自变量x的变化是如何变化的?【归纳结论】一般地,当k0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.探究3:反比例函数y=的图象可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数y=的图象的方式与步骤进行自主探索其图象;(2)可以通过探索函数y=与y=之间的关系,画出y=的图象【归纳结论】一般地,当k0时,图象在一、三象限;当k0,所以双曲线的两支分别位
4、于第一、三象限.【答案】 C6.下列反比例函数图象一定在第一、三象限的是( )【答案】 C7.已知函数为反比例函数(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当3x时,求此函数的最大值和最小值8.作出反比例函数y=的图象,并根据图象解答下列问题:(1)当x4时,求y的值;(2)当y2时,求x的值;(3)当y2时,求x的范围解:列表:由图知:(1)y3;(2)x6;(3)0x69.作出反比例函数y=的图象,结合图象回答:(1)当x2时,y的值;(2)当1x4时,y的取值范围;(3)当1y4时,x的取值范围解:列表:由图知:(1)y2;(2)4y1;(3)4x1【教学说明】为了让学生灵活的用反比例函数的性质解决问题,在研究每一题时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业教材“习题1.2”中第1、2、4题.教学反思通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法.同时也为后面的学习奠定基础.从练习上来看,学生掌握的不够好,应多加练习.