1、八年级数学上册 第2章 一次函数 2.2 一次函数和它的图象名师教案2 湘教版教学目标1、理解正比例函数、一次函数的概念。2、会根据数量关系,求正比例函数、一次函数的解析式。3、会求一次函数的值。教学重点与难点教学重点:一次函数、正比例函数的概念和解析式。教学难点:例2的问情境比较复杂,学生缺乏这方面的经验。教学方法观察、合作、交流、探索.教学过程比较下列各函数,它们有哪些共同特征? 提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。定义:一般地,函数叫做一次函数。当 时,一次函数就成为叫做正比例函数,常数叫做比例系数。强调:(1)作为一次函数的解析式,其中中,哪些是常量,
2、哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少? 例1:求出下列各中与之间的关系,并判断是否为的一次函数,是否为正比例函数:某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。正方形周长与面积之间的关系。假定某种储蓄的月利率是0.16%,存入1000元本金后。本钱与所存月数之间的关系。此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。解:(1)因为每平方米种玉米6株
3、,所以平方米能种玉米株。得,是的一次函数,也是正比例函数。 (2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。 (3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。练习:1.已知若是的正比例函数,求的值。2.已知是的一次函数,当时,;当时,求关于的一次函数关系式。求当时,的值。例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至2000元部分的税率为10%设全月应纳税所得额为元,且。应纳个人所得税为元,求关于的函数解析式和自变量的取值范围。小明妈妈的工资为每月2600元,小聪妈妈的工资为每月2800元。问她俩每月应纳个人所得税多少元?提示:此较为复杂,而有关个人所得税的计算方法和一些专有名词学生可能很生疏。所以讲解时,首先要帮助学生理解问,对个人所得税,应纳税所得额这些名词的含义要予以说明。尤其是根据累进税率计算个人所得税的方法,要举例说明。解:(1) 所求的函数解析式为,自变量的取值范围为。(2)小明妈妈的全月应纳税所得额为将代入函数解析式,得小聪妈妈的全月应纳税所得额为将代入函数解析式,得 答:小明妈妈每月应纳个人所得税155元,小聪妈妈每月应纳个人所得税175元。练习:教科书P40第1,2。作业:教科书P45第1,2,3课后反思: