1、课 题锐角三角函数课的类型新授复备记录教学目标(三维)1知识与技能:通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 2过程与方法:能根据正弦概念正确进行计算。逐步培养学生观察、比较、分析,概括的思维能力。3情感态度与价值观:经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。教材分析重点:正弦概念难点:根据正弦概念正确进行计算教学资源(教学具及课件等)三角尺教法、学法启发式课时安排一课时教 学 过 程导 入操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图
2、片) 小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米然后他很快就算出旗杆的高度了。你想知道小明怎样算出的吗?1米10米?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度。这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。 下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦新 授为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是3
3、0o,为使出水口的高度为35m,那么需要准备多长的水管?问题转化为,在RtABC中,C=90o,A=30o,BC=35m,求AB 根据“再直角三角形中,30o角所对的边等于斜边的一半”,即可得AB=2BC=70m.即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个RtABC,使C=90o,A=45o,计算A的对边与斜边的比,能得到什么结论?分析:在RtABC 中,C=90o,由于A=45o,所以RtABC是等腰直角三角形,由勾股定理得 ,故 结论:在一个直角三角形中,如果一个锐角等于45o,那么不管
4、三角形的大小如何,这个角的对边与斜边的比值都等于一般地,当A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:RtABC与RtABC,C=C =90o,A=A=,那么与有什么关系分析:由于C=C =90o, A=A=,所以RtABCRtABC,即 结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比也是一个固定值。如图,在RtABC中,A、B、C所对的边分别记为a、b、c。师:在RtABC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦。记作sinA。课内巩固例1如图,在中, ,求sin和sin的值.课后小结今天我们学习了哪些知识。课外练习作 业:课本p79 练习板书设计锐角三角函数正弦实践探索认识正弦例1如图,在中, ,求sin和sin的值.教 后 记