1、第三课时 课题:第28章 锐角三角函数281锐角三角函数(3) 特殊角三角函数值【学习目标】: 能推导并熟记30、45、60角的三角函数值,并能根据这些值说出对应锐角度数。: 能熟练计算含有30、45、60角的三角函数的运算式【学习重点】熟记30、45、60角的三角函数值,能熟练计算含有30、45、60角的三角函数的运算式【学习难点】30、45、60角的三角函数值的推导过程【导学过程】一、自学提纲:一个直角三角形中,一个锐角正弦是怎么定义的? 一个锐角余弦是怎么定义的? 一个锐角正切是怎么定义的? 二、合作交流:思考:两块三角尺中有几个不同的锐角? 是多少度? 你能分别求出这几个锐角的正弦值、
2、余弦值和正切值码? 三、教师点拨:归纳结果304560siaAcosAtanA例3:求下列各式的值 (1)cos260+sin260 (2)-tan45例4:(1)如图(1),在RtABC中,C=90,AB=,BC=,求A的度数 (2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求a四、学生展示:一、课本83页 第1 题课本83页 第 2题二、选择题1已知:RtABC中,C=90,cosA=,AB=15,则AC的长是( ) A3 B6 C9 D122下列各式中不正确的是( ) Asin260+cos260=1 Bsin30+cos30=1 Csin35=cos55 Dtan45si
3、n453计算2sin30-2cos60+tan45的结果是( ) A2 B C D14已知A为锐角,且cosA,那么( ) A0A60B60A90 C0A30D30A60时,cosa的值( ) A小于 B大于 C大于 D大于18在ABC中,三边之比为a:b:c=1:2,则sinA+tanA等于( )A9已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,若梯形的高是,则CAB等于( ) A30 B60 C45 D以上都不对10sin272+sin218的值是( ) A1 B0 C D11若(tanA-3)2+2cosB-=0,则ABC( ) A是直角三角形 B是等边三角形 C是含有60的任意三角形 D是顶角为钝角的等腰三角形三、填空题12设、均为锐角,且sin-cos=0,则+=_13的值是_14已知,等腰ABC的腰长为4,底为30,则底边上的高为_,周长为_15在RtABC中,C=90,已知tanB=,则cosA=_五、课堂小结:要牢记下表:304560siaAcosAtanA六、作业设置:课本 第85页 习题281复习巩固第3题七、自我反思:本节课我的收获: 。