1、16.3二次根式的加减第2课时【教学目标】知识与技能:1.会进行二次根式的混合运算.2.会解含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.过程与方法:经历探索二次根式的混合运算方法步骤的过程,进一步培养学生的计算能力.情感态度与价值观:通过对二次根式的混合运算的探索,让学生体会探索学习的乐趣,从而培养学生解决问题的能力.【重点难点】重点:会进行二次根式的混合运算.难点:会进行二次根式的混合运算.【教学过程】一、创设情境,导入新课:复习引入:请同学们完成下列各题:1.计算:(1)(2x+y)zx;(2)(2x2y+3xy2)xy;2.计算:(1)(2x+3y)(2x-3y)
2、;(2)(2x+1)2+(2x-1)2教师点评:这些内容是整式运算的再现.主要有(1)单项式单项式;(2)单项式多项式;(3)多项式单项式;(4)完全平方公式;(5)平方差公式的运用.提出问题:如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?解:仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.这节课我们继续学习二次根式的加减.二、探究归纳活动1:二次根式的混合运算1.填空:(1)(+)=+=3+6依据_=9.(2)(+3)(-5)=()2-5+3-15依据_法则=-2-13.(3)
3、(+)(-)=()2-()2依据_=2-3=-1.(4)(-2)2=()2-22+(2)2依据_=6-12+12=18-12.答案:(1)乘法分配律(2)多项式乘法(3)平方差公式(4)完全平方公式2.思考:根据(1)(2)(3)(4)的填空,你能得到什么结论?答案:多项式的乘法法则、运算律及乘法公式在二次根式运算中仍然适用.3.归纳:在二次根式的混合运算中,多项式的乘法法则和乘法公式仍然适用.活动2:例题讲解:【例1】计算:(1)(4+3)2;(2)(2+3)(2-3);(3)(2+)(2-)-(1+)2.解:(1)(4+3)2=42+243+(3)2=16+24+45=61+24.(2)(
4、2+3)(2-3)=(2)2-(3)2=12-18=-6.(3)(2+)(2-)-(1+)2=22-()2-(1+2+2)=4-3-1-2-2=-2-2.总结:根据题目特点灵活应用运算律、乘法法则和乘法公式进行计算、化简. 【例2】计算:(-)+(1-)2解:(-)+(1-)2=-+1-2+3=-2+1-2+3=2-.点拨:二次根式的混合运算的方法:二次根式的混合运算顺序与实数的运算顺序一样,先算乘方,再算乘除,最后算加减,有括号的先算括号内的.三、交流反思这节课我们学习了二次根式的混合运算,整式的乘法法则、乘法公式和运算律在二次根式运算中同样适用,二次根式的混合运算顺序与实数的运算顺序一样,
5、先算乘方,再算乘除,最后算加减,有括号的先算括号内的.四、检测反馈1.计算:(-)(+)的结果是()A.2B.-2C.2D.-22.下列各式正确的是()A.(+)=7B.(+)(-)=5-C.(-)(+)=3-2=1D.(-)2=5-3=23.若x=-,y=+,则xy的值为()A.2B.2C.a+bD.a-b4.计算:(9-5)2=_.5.计算:(+1)(-1)=_;(+1)2=_.6.已知a=3+2,b=3-2,则ab2-a2b=_.7.计算:(1);(2)(2-)(+);(3)(3+2)2;(4)(-)(-);(5)(+)(-)-()-1.五、布置作业教科书第15页习题16.3第4,6,8
6、题.六、板书设计16.3二次根式的加减第2课时一、整式的乘法法则及公式在二次根式运算中的应用二、二次根式的混合运算三、例题讲解四、板演练习七、教学反思1.整式的乘法法则及乘法公式在二次根式运算中的应用,可通过对复习引入中的分析,归纳总结二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.教师出示例题和练习题目,引导学生类比多项式的乘法法则和乘法公式进行计算.体会整式的乘法法则及公式和二次根式运算的联系.教师强调最后结果要化成最简二次根式.2.关于二次根式的混合运算,要引导学生在复习巩固整式运算的基础上,采用类比的方法讲授二次根式的混合运算,强调整式运算的分配律、多项式的乘法法则和乘法公式在二次根式混合运算中同样适用,注意运算顺序,多练习掌握二次根式的混合运算的方法.