1、2721相似三角形的判定(三)用两角教学目标1 掌握判定两个三角形相似的方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。2 培养学生的观察发现比较归纳能力,感受两个三角形相似的判定方法3与全等三角形判定方法(AASASA)的区别与联系,体验事物间特殊与一般的关系。3 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。教学重点与难点重点:两个三角形相似的判定方法3及其应用难点:探究两个三角形相似判定方法3的过程教学设计教学过程设计意图说明新课引入:复习两个三角形相似的判定方法12与全等三角形判定方法(SSSSAS)的区别与联系: SSS 如果两个三角
2、形的三组对应边的比相等,那么这两个三角形相似。(相似的判定方法1)SAS如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。(相似的判定方法2)从复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)及两个三角形相似的判定方法2与全等三角形判定方法(SAS)的区别与联系来以旧引新,帮助学生建立新旧知识间的联系,体会事物间一般到特殊特殊到一般的关系。提出问题: 观察两副三角尺,其中同样角度(300与600,或450与450)的两个三角尺大小可能不同,但它们看起来是相似的。如果两个三角形有两组角对应相等,它们一定相似吗?延伸问题:作ABC与A1B1C1,使得A=A1
3、,B=B1,这时它们的第三角满足C=C1吗?分别度量这两个三角形的边长,计算,你有什么发现?(学生独立操作并判断)分析:学生通过度量,不难发现这两个三角形的第三角满足C=C1,=。分别改变这两个三角形边的大小,而不改变它们的角的大小,再试一试,是否有同样的结论?(利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。)通过观察同样角度的两副三角尺,可以发现:两个三角尺大小可能不同,但它们的形状相同。学生从实物的比较中容易直观地得到:如果两个三角形有两组角对应相等,它们很可能相似。作图并动手进行尺规实验来探索命题成立的可能性,让学生经历定理的重发现过程,有助于对定理的理解。 让学生进行协同式小
4、组合作可以提高实验的效率,并培养学生的合作能力。探究方法:探究3分别改变这两个三角形边的大小,而不改变它们的角的大小,再试一试,是否有同样的结论?(教师应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生观察在动态变化中存在的不变因素。)归纳:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(定理的证明由学生独立完成) 若A=A1,B=B1则ABCA1B1C1把学生利用刻度尺、量角器等作图工具作静态探究与应用“几何画板”等计算机软件作动态探究结合起来,丰富学生的探究体验,帮助学生深入理解定理的内涵。对几何定理作文字语言图形语言符号语言的三维注解有利于学生进行
5、认知重构,以全方位地准确把握定理的内容。应用新知:例2 如图272-7,弦AB和CD相交于O内一点P,求证:PAPB=PCPD。分析:欲证PAPB=PCPD,只需,欲证只需PACPDB,欲证PACPDB,只需A=D,C=B。 让学生了解运用相似三角形的判定方法3进行判定三角形相似的一般思路,体会这与运用全等三角形的判定方法AASASA进行相关证明与计算的雷同性。运用提高:本节课本练习1和练习2运用相似三角形的判定方法3进行相关证明与计算,让学生在练习中熟悉定理。课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。布置作业:1 必做题:习题272题2(3)。2 选做题:习题272题11。3 备选题:如图ADAB于D,CEAB于E交AB于F,则图中相似三角形的对数有对。分层次布置作业,让不同的学生在本节课中都有收获。备选题答案:6设计思想: 本节课主要是探究相似三角形的判定方法3,由于上两节课已经学习了探究两个三角形相似的判定引例判定方法1判定方法2,因此本课教学力求使探究途径多元化,把学生利用刻度尺、量角器等作图工具作静态探究与应用“几何画板”等计算机软件作动态探究有机结合起来,让学生充分感受探究的全面性,丰富探究的内涵。协同式小组合作学习的开展不仅提高了数学实验的效率,而且培养了学生的合作能力。