1、一次函数的图象教学目标知识与技能1、理解函数图象的概念。2、经历作图过程,初步了解作函数图象的一般步骤。3、理解一次函数的代数表达式与图象之间的对应关系。4、能较熟练作出一次函数的图象。过程与方法1、已知解析式作函数的图象,培养学生数形结合的意识和能力。2、在探究活动中发展学生的合作意识和能力。情感与价值观1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。2、加强新旧知识的联系,促进学生新的认知结构的建构。教学重点1、能熟练地作出一次函数的图象。2、归纳作函数图象的一般步骤。教学难点理解一次函数的代数表达式与图象之间的对应关系。教学过程1、新课导入上节课我们学习了一次函数
2、及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。2、讲授新课(1)函数图象的概念把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合。(2)作一次函数的图象例1:作出一次函
3、数y=2x+1的图象解:列表:x-2-1012y=2x+1-3-1135描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。连线:把这些点依次连接起来,得到y=2x+1的图象(如图6-4),它是一条直线。议一议:一次函数的图象有什么特点?你是怎样理解的?做一做在同一坐标系内画出一次函数y=-2x+3,y=-x,y=-x+3,y=5x-2的图象,列表:描点:以表中各组对应值作为点的坐标,在直角坐标第内描出相应的点。连线:把这些点依次连接起来,得到函数的图象,它是一条直线。图象如下:3、议一议(1)上述四个函数中,随着X的值的增大,Y值如何变化?相应图形上的点变化趋势如何?(2)直线y
4、=-x,y=-x+3的位置如何?你能通过适当的移动将直线y=-x,变为直线y=-x+3吗?一般地,直线y=kx+b与y=kx又有怎样的位置关系呢?(3)直线y=2x+3与直线y=-x+3,它们的图象有什么共同特点?一般地,你能从y=kx+b的图象上直接看出b的数值吗小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b的图象也称为直线y-kx+b。当K0时,y的值随着x值的增大而增大;当K0时,y的值随着x的增大而减小。4、课堂练习分别作出一次函数y=x与y=-3x+9的图象。六、课后小结1、函数图象的概念。2、作一次函数的步骤。3、明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了。七、课后作业习题4.4 1、2题。