1、2.2一元二次方程的解法(3)教学内容间接即通过变形运用开平方法降次解方程教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤重难点关键1重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤2难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-
2、7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得x=或mx+n=(p0)如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有(2)不能既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接
3、降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式 x2+6x+32=16+9左边写成平方形式 (x+3)2=25 降次x+3=5 即 x+3=5或x+3=-5 解一次方程x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解例1用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-=0
4、分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上解:略三、巩固练习课内练习1 2四、应用拓展例3如图,在RtACB中,C=90,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后PCQ的面积为RtACB面积的一半分析:设x秒后PCQ的面积为RtABC面积的一半,PCQ也是直角三角形根据已知列出等式解:设x秒后PCQ的面积为RtACB面积的一半根据题意,得:(8-x)(6-x)=86整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去所以2秒后PCQ的面积为RtACB面积的一半五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程六、布置作业1教材 复习巩固23(1)(2)