1、相似三角形的性质课题相似三角形的性质备课人教学目标知识目标理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方能力目标能用三角形的性质解决简单的问题情感目标在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质教学重点相似三角形的性质与运用教学难点相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解主要教法尝试指导法教学媒体班班通教学过程1复习提问:已知:ABCABC,根据相似的定义,我们有哪些结论?(从对应边上看; 从对应角上看:)问:两个三角形相似,除了对应边成比例、对应角相等之外,
2、我们还可以得到哪些结论? 2思考:(1)如果两个三角形相似,它们的高、中线、角平分线及周长之间有什么关系?(2)如果两个三角形相似,它们的面积之间有什么关系?(3)两个相似多边形的周长和面积分别有什么关系?推导见教材P37结论相似三角形的性质: 性质1 相似三角形对应高、中线、角平分线、周长的比等于相似比 即:如果 ABC ABC,且相似比为k , 那么 性质2 相似三角形面积的比等于相似比的平方 即:如果 ABC ABC,且相似比为k , 那么 相似多边形的性质1相似多边形周长的比等于相似比相似多边形的性质2相似多边形面积的比等于相似比的平方五、例题讲解 例 1(补充) 已知:ABC ABC
3、,它们的周长分别是 60 cm 和72 cm,且AB15 cm,BC24 cm,求BC、AB、AB、AC的长 分析:根据相似三角形周长的比等于相似比可以求出BC等边的长 解:略(此题学生可以让自己完成) 例2(教材P38例3) 分析:根据已知可以得到,又有夹角D=A,由相似三角形的判定方法2 可以得到这两个三角形相似,且相似比为,故DEF的边EF上的高和面积可求出 解:略(见教材P38)六、课堂练习1教材P3812填空:(1)如果两个相似三角形对应边的比为35 ,那么它们的相似比为_,周长的比为_,面积的比为_(2)如果两个相似三角形面积的比为35 ,那么它们的相似比为_,周长的比为_(3)连
4、结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于_,面积比等于_(4)两个相似三角形对应的中线长分别是6 cm和18 cm,若较大三角形的周长是42 cm ,面积是12 cm 2,则较小三角形的周长为_cm,面积为_cm23如图,在正方形网格上有A1B1C1和A2B2C2,这两个三角形相似吗?如果相似,求出A1B1C1和A2B2C2的面积比七、课后练习1如图,点D、E分别是ABC边AB、AC上的点,且DEBC,BD2AD,那么ADE的周长:ABC的周长 2已知:如图,ABC中,DEBC,(1)若, 求的值; 求的值; 若,求ADE的面积;(2)若,过点E作EFAB交BC于F,求BFED的面积;(3)若, ,过点E作EFAB交BC于F,求BFED的面积课后反思教学成败得失及改进设想: