资源描述
2.2.3 证明与反证法
预设
目标
1.了解证明的含义。
2.体验、理解证明的必要性。
3.了解证明的表达格式,会按规定格式证明简单命题。
教学
重难点
重点:本节教学的重点是证明的含义和表述格式。
难点:本节教学的难点是按规定格式表述证明的过程。
教具 准备
三角尺
教法
学法
合作、讨论、讲授
教学过程
一、 新课引入
教师借助多媒体设备向学生演示课内节前图:比较线段AB和线段CD的长度。
通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性
二、 新课教学
(1)命题“等腰直角三角形的斜边是直角边的 倍”是真命题吗?请说明理由
分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论。
教师对具体的说理过程予以详细的板书。
小结归纳得出证明的含义,让学生体会证明的初步格式。
(2)通过例2的教学理解证明的含义,体会证明的格式和要求
例2、 证明命题“如果一个角的两边分别平行于另一个角的两边,且方向相同,那么这两个角相等”是真命题。
分析:根据需要画出图形,用几何语言描述题中的已知条件、以及要证明的结论(求证)。
证明过程的具体表述 (略)
小结:证明几何命题的表述格式
①按题意画出图形;
②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;
③在“证明”中写出推理过程。
(3)练习:P76课内练习2
三、 例题教学
P57例题1
例3、 已知:如图,AC与BD相交于点O,
AO=CO,BO=DO。
求证: AB∥CD (证明略)
四、 练习巩固
P58 练习1、2、3
五、 小结
(1) 证明的含义
(2) 真命题证明的步骤和格式
(3) 思考、探索:假命题的判断如何说理、证明?
板书
设计
例题2
例题3
作业
P59 习题2.2 A组6、7
教学反思
展开阅读全文