1、32平面直角坐标系第1课时平面直角坐标系1理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;(重点)2能在给定的直角坐标系中,由点的位置写出它的坐标(难点)一、情境导入我们已经学过了数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图那么,如何确定平面内点的位置呢?二、合作探究探究点一:认识平面直角坐标系与平面内点的坐标【类型一】 平面直角坐标系及相关概念 如图所示,点A、点B所在的位置是()A第二象限,y轴上B第四象限,y轴上C第二象限,x轴上D第四象限,x轴上解析:根据坐标平面的四个象限来判定点A在第四象限,点B在x轴正半轴上故选D.方法总结:两坐标轴
2、上的点不属于任何一个象限,象限是按逆时针方向排列的【类型二】 由点到坐标轴的距离确定点的坐标 已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是()A(2,1) B(1,2)C(2,1) D(1,2)解析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2,又因为垂足在y轴的负半轴上,则纵坐标为2;由点P到y轴的距离为1,可知点P的横坐标的绝对值为1,又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,2)故选B.方法总结:本题的易错点有三处:混淆距离与坐标之间的区别;不知道与“点P到x轴的距离”对应的
3、是纵坐标,与“点P到y轴的距离”对应的是横坐标;忽略坐标的符号出现错解若本例题只已知距离而无附加条件,则点P的坐标有四个探究点二:在平面直角坐标系内描点 已知点A(0,3),B(1,1),C(3,2),D(2,0),E(3,2),F(1,1),G(0,3),H(1,1),I(3,2),J(2,0),K(3,2),L(1,1)请在图中的平面直角坐标系中,分别描出上述各点,并顺次连接A,B,C,D,E,F,G,H,I,J,K,L,A.解析:依据点的横、纵坐标的定义,分别描出各点并依次连接即可解:如图所示方法总结:所求图形在四个象限的面积相等,所以只需求其中一部分面积即可三、板书设计平面直角坐标系通过平面直角坐标系的有关内容的学习,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习的积极性和好奇心