1、为什么是0.618(第一课时)知识目标:1、掌握黄金分割中黄金比的来历; 2、经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性。教学重点难点:列一元一次方程解应用题,依题意列一元二次方程教学程序:一、复习1、解方程:(1)x2+2x+1=0(2)x2+x1=02、什么叫黄金分割?黄金比是多少?(0.618)3、哪些一元二次方程可用分解因式法来求解?(方程一边为零,另一边可分解为两个一次因式)二、新授1、黄金比的来历 如图,如果=,那么点C叫做线段AB的黄金分割点。由=,得AC2=ABCB设AB=1, AC=x ,则CB=1xx2=1(1x) 即:x2+x1=0解
2、这个方程,得x1= , x2=(不合题意,舍去)所以:黄金比=0.618注意:黄金比的准确数为,近似数为0.618.上面我们应用一元二次方程解决了求黄金比的问题,其实,很多实际问题都可以应用一元二次方程来解决。2、例题讲析:例1:P64 题略(幻灯片)(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)解:(1)连接DF,则DFBC,ABBC,AB=BC=200海里AC=AB=200海里,C=45CD=AC=100海里DF=CF,DF=CDDF=CF=CD=100=100海里所以,
3、小岛D和小岛F相距100海里。(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里EF=AB+BC(AB+BE)CF=(3002x)海里在RtDEF中,根据勾股定理可得方程:x2=1002+(3002x)2整理得,3x21200x+100000=0解这个方程,得:x1=200118.4x2=200+(不合题意,舍去)所以,相遇时,补给船大约航行了118.4 海里。三、巩固:练习,P65 随堂练习:1四、小结:列方程解应用题的三个重要环节:1、整体地,系统地审清问题;2、把握问题中的等量关系;3、正确求解方程并检验解的合理性。五、作业:P66 习题2.8:1、2六、教学后记:
4、为什么是0.618(第二课时)教学目标:1、分析具体问题中的数量关系,列出一元二次方程;2、通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。教学重点、难点:列一元一次方程解应用题,找出等量关系列方程。教学程序:一、复习:1、黄金分割中的黄金比是多少? 准确数为,近似数为0.618 2、列方程解应用题的三个重要环节是什么?3、列方程的关键是什么?(找等量关系)4、销售利润= 销售价 销售成本二、新授在日常生活生产中,我们常遇到一些实际问题,这些问题可用列一元二次方程的方法来解答。1、讲解例题:例2、新华商场销售某种冰箱,每台进货价为2500元,市场调研表明,为销售价为290
5、0元时,平均每天能售出8台,而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价为多少元?分析:每天的销售量(台)每台的利润(元)总利润(元)降价前84003200降价后8+4400x(8+)(400x)每台冰箱的销售利润平均每天销售冰箱的数量=5000元如果设每台冰箱降价为x元,那么每台冰箱的定价就是(2900x)元,每台冰箱的销售利润为(2900x2500)元。这样就可以列出一个方程,进而解决问题了。解:设每台冰箱降价x元,根据题意,得:(2900x2500)(8+4)=50002900150=2750 元所以,每台冰箱应定价为2750元。关键:找等量关系列方程。2、做一做:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明这种台灯的售价每上涨一元,某销售量就减少10个,为了实现平均每月20000的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?分析:每个台灯的销售利润平均每天台灯的销售量=10000元可设每个台灯涨价x元。(40+x30) (60010x)=10000答案为:x1=10, x2=4010+40=50, 40+40=806001010=500 6001040=200