1、1.2能得到直角三角形吗(二)教学目标:知识与技能掌握直角三角形的判别条件,并能进行简单应用; 教学思考进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型解决问题会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识重点和难点重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论难点会辨析哪些问题应用哪个结论课前准
2、备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法这样做得到的是一个直角三角形吗? 提出课题:能得到直角三角形吗讲授新课:如何来判断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,如果三角形的三边为,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)继续尝试:下面的三组数分别是一个三角形的三边长a,b,
3、c:5,12,13; 6,8, 10; 8,15,17.(1)这三组数都满足a2 +b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形满足a2 +b2=c2的三个正整数,称为勾股数 例1 一个零件的形状如左图所示,按规定这个零件中A和DBC都应为直角工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗? 随堂练习:下列几组数能否作为直角三角形的三边长?说说你的理由9,12,15;15,36,39;12,35,36;12,18,22已知ABC中BC=41, AC=40, AB=9, 则此三角形为_三角形, _是最大角.四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且ABC=900,求这个四边形的面积习题1.3课堂小结:直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形满足a2 +b2=c2的三个正整数,称为勾股数勾股数扩大相同倍数后,仍为勾股数课后记录: