1、1.3 平行四边形、矩形、菱形、正方形的性质与判定(3)教学目标1、会归纳菱形的特性并进行证明2、能运用菱形的性质定理进行简单的计算与证明3、在进行探索、猜想、证明的过程中,进一步发展推理论证的能力,进一步体会证明的必要性教学重、难点重点:菱形的性质定理证明难点:性质定理的运用 生活数学与理论数学的相互转化教学过程:一、 情境创设1将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形? (同桌互相帮助。) 2探索。 请你作该菱形的对角线,探索菱形有哪些特征,并填空。 (从边、对角线入手。) (1)边:都相等; (2)对角线:互相垂直。 (学生通过自己的操作、观察、
2、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。) 问题:你怎样发现的?又是怎样验证的? (可以指名学生到讲台上讲解一下他的结果。) 3概括。 菱形特征1:菱形的四条边都相等。 菱形特征2:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。 引导学生剖析矩形与菱形的区别。 矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分;菱形的四条边都相等,对边平行,对角相等,对角线互相垂直平分,每条对角线平分它的一组对角。 4请你折折,观察并填空。(引导学生归纳。) (1)菱形是不是中心对称图形?对称中心是_。 (2)是不是轴对称图形?对称轴有几条?_。二、合
3、作交流问题一 观察平行四边形和菱形的对角线把它们所分成的三角形,你有何发现?(引导学生不断地学会从多个角度观察、认识图形,主动地发现和获得新的数学结论,不断地积累数学活动的经验)问题二 证明:菱形的4条边都相等。 菱形的对角线互相垂直,并且每一条对角线平分一组对角。分析:第一条定理可先用“两组对边分别相等”证明平行四边形,再利用一组邻边相等得证;第二条定理可利用“三线合一”证得。问题三 已知菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为5;面积为24)你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?由此可得:菱形的
4、面积等于它的两条对角线长的积的面积。例 1、 如图3个全等的菱形构成的活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间 的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间 的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少? 分析:可将问题归结到菱形ABCD中研究,求出BD的长即可。可根据菱形的对角线互相垂直平分利用勾股定理求出BD。练习P18 1、2例2 已知:如图,四边形ABCD是菱形,G是AB上任一点,DF交AC于点E。 求证:AGD=CBE分析:结合“全等三角形对应角相等”和“两直线平行,内错角相等”即可得证。练
5、习:1、如图,在菱形ABCD中,E、F分别是AB、CD的中点,如果EF=2,那么ABCD的周长是( D )A4 B8 C12 D162、如图,已知菱形的两条对角线长为,你能将菱形沿对角线分割后拼接成矩形吗?画图说明(拼出一种图形即可);在此过程中,你能发现菱形的面积与,的关系吗? 拼法(1)拼法(2)或结论:菱形的面积等于两对角线乘积的一半3、己知:如图,菱形ABCD中,B=600,AB4,则以AC为边长的正方形ACEF的周长为 .四、分层训练1已知菱形的周长为16cm,则菱形的边长为_cm2已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是_cm3已知菱
6、形的边长是5cm,一条对角线长为8cm,则另一条对角线长为_cm4菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=_cm,BD=_cm5如图,四边形ABCD是菱形,ABC=120,AB=12cm,则ABD的度数为_,DAB的度数为_;对角线BD=_,AC=_;菱形ABCD的面积为_6菱形的两条对角线把菱形分成全等的直角三角形的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个7如图,在菱形ABCD中,CEAB,E为垂足,BC=2,BE=1,求菱形的周长和面积五、小结菱形的对角线把菱形分成等腰三角形和直角三角形,所以解决菱形问题,常常可以转化为等腰三角形或直角三角形问题。六、作业 七、教后感