1、1.3平行四边形、矩形、菱形、正方形的性质与判定(2)教学内容教材版本苏科版教学课时共 课时 第 课时课 型新授课教学目标1、会证明平行四边形的判定定理,结合具体命题了解反证法2、能运用平行四边形的判定定理及反证法进行简单的计算与证明3、能运用平行四边形的性质与判定定理进行比较简单的综合推理与证明4、初步体会证明过程中的反证法的思想及其说理的过程教学重点平行四边形判定定理的证明,反证法教学难点用反证法证明教学准备多媒体教 学 过 程修注栏一、情境创设回忆我们曾探索得到的一个四边形是平行四边形的条件,填写下表:条 件结 论四边形ABCD,对角线AC、BD相交于点O四边形ABCD是平行四边形二、探
2、索活动问题一 你能证明我们曾探索得到的平行四边形的判定方法是正确的吗?证明:一组对边平行且相等的四边形是平行四边形。分析:先根据命题画出图形,再写出已知、求证,最后用研究平行四边形常见的辅助线“连结对角线”证三角形全等,得到两组内错角相等,由平行线证出平行四边形。问题二 证明:对角线互相平分的四边形是平行四边形。问题三 你认为“一组对边平行,另一组对边相等的四边形是平行四边形”这个结论正确吗?为什么?问题四 你认为“在四边形ABCD中,如果OA=OC,OBOD,那么四边形ABCD不是平行四边形”这个结论正确吗?为什么?分析:假设四边形ABCD是平行四边形,那么OA=OC,OB=OD,这与条件O
3、BOD矛盾,所以四边形ABCD不是平行四边形。假设条件成立,结论不成立,然后由这个“假设”出发推导出与条件矛盾的结果,从而证明结论一定成立,这种证明方法叫做反证法。三、例题教学例1 已知:如图,在ABCD中,对角线AC、BD相交于点O,AEBD,CFBD,垂足分别为E、F。 求证:四边形AECF是平行四边形。分析:由垂直可证一组对边平行,再利用全等证这组对边相等;或由平行四边形对角线互相平分知OA=OC,再证OE=OF即可;或由垂直证一组对边平行,再利用面积相等法证这组对边相等。四、练习五、小结1、如图,ADBC,AD=BC,且E、F分别是AD、BC的中点,图中有哪些四边形是平行四边形?说说你的理由。 2、“在一个三角形中,如果两条边不相等,那么两条边所对的角也不相等”这个命题正确吗?如果正确证明你的结论。六、作业板书设计教学反思