1、5.1.1 相交线课题授课时间教学目标知识与能力在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角过程与方法通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念情感态度价值观在解决问题的过程中,使学生提高对合作意识的认识,培养合作精神教学重点邻补角、对顶角的概念,对顶角性质与应用教学难点理解对顶角相等的性质的探索教学方法小组合作学习,合作探究,学生反馈,老师校正教具准备多媒体课件课型授新教 学 活 动教学环节补充一、复习导入 教师在轻松欢快的音乐中演示第五章章首图片为主体的课件. 学生欣赏图片,阅读其中的文字. 师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平
2、行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.二、自学指导观察剪刀剪布的过程,引入两条相交直线所成的角 握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.三、 问题导学认识邻补角和对顶角,探索对顶角性质(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流. AOC和BOC有一条公共边OC,它们的另一
3、边互为反向延长线. AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线. ( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等. (3).概括形成邻补角、对顶角概念. 有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角. 如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. 四、典题训练 1.例:如图,直线a,b相交,1=40,求2,3,4的度数. 2.:判断下列图中是否存在对顶角.小结自我检测 一、判断题:1.如果两个角有公共顶点和一条公共
4、边,而且这两角互为补角, 那么它们互为邻补角. ( )2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )二、填空题:1.如图1,直线AB、CD、EF相交于点O,BOE的对顶角是_,COF 的邻补角是_.若AOC:AOE=2:3,EOD=130,则BOC=_. (1) (2)2.如图2,直线AB、CD相交于点O,COE=90,AOC=30,FOB=90, 则EOF=_.三、解答题:如图,直线AB、CD相交于点O. (1)若AOC+BOD=100,求各角的度数.(2)若BOC比AOC的2倍多33,求各角的度数. 毛学生独立思考,然后与同伴交流板书设计: 相交线 有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角. 如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.教后记:牢记概念有助于后续学习