收藏 分销(赏)

实数教学.doc

上传人:仙人****88 文档编号:7607739 上传时间:2025-01-10 格式:DOC 页数:3 大小:51.50KB
下载 相关 举报
实数教学.doc_第1页
第1页 / 共3页
实数教学.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
实数 (一)本章知识结构如下图所示:    (二)教科书内容 本章主要包括算术平方根、平方根、立方根,以及实数的有关概念、运算以及实数在数轴上的表示等内容.本章的重点是算术平方根和平方根的概念和求法,难点是平方根和实数的概念.  教科书的第一节是平方根,本节先研究算术平方根,再研究平方根.教科书首先创设一个问题情景,从中抽象出的数学问题为:已知正方形的面积求其边长.这是一个典型的求算术平方根的问题,它与学生熟悉的已知正方形的边长求其面积是一个互逆的过程.通过对这类问题的探讨,引出算术平方根的概念,给出其符号表示,这时教科书所涉及到的被开方数本质上都是完全平方数.接着,教科书设置一个“探究”栏目,让学生尝试能否将两个面积为1的小正方形拼成一个面积为2的大正方形,进而求出这个大正方形的边长.这也是一个已知正方形的面积求它的边长的问题,由于这个大正方形的面积为2,根据前面学过的算术平方根的概念和表示方法,可以求出这个大正方形的边长是,这样教科书就引进了用根号形式表示的无理数(但暂时不出现无理数的概念),这是教科书第一次出现这样的数.另外,通过学生将两个面积为1的小正方形拼成一个面积为2的大正方形的活动,也使学生感受到无理数是从现实世界中抽象出来的,是一种不同于有理数的数.出现后,一个很自然的问题是,到底多大.教科书采用用有理数夹逼的方法,利用不足近似值和过剩近似值来估计的大小,通过一步一步的估计,得到的越来越精确的近似值,进而指出是一个无限不循环小数的事实,并进一步指出,,等也是无限不循环小数,这就为后面认识无理数打下基础.会使用计算器求数的算术平方根是本章的一个教学要求,教科书通过一个例题,介绍了使用计算器求算术平方根的方法.用有理数估计无理数的大小,也是学习本章应该注意的一个问题,教科书结合一个实际例子(例3)介绍了用有理数估计无理数的常用方法.至此,教科书讨论了有关算术平方根的内容,包括算术平方根的概念、求法,无限不循环小数以及用有理数估计无理数等内容.接着,教科书设置一个“思考”栏目,对平方根展开讨论.在这个“思考”栏目中,要求学生算出平方等于9的数,通过对这个问题的探讨,找到解决问题的方法,利用这种方法进一步求出平方等于1,16,36…的数,由此抽象概括出平方根的概念和开平方运算.开平方运算与平方运算是互逆运算,教科书通过举例分析了这两种运算的互逆过程,并用图示进一步说明.最后,教科书结合具体例子,通过具体计算一些数的平方根,探讨数的平方根的特征,归纳出“正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”. 教科书的第二节是立方根.对于立方根,教科书采用了与讨论平方根类似的方法进行讨论.首先设置一个问题情景,从中抽象出的数学问题是:已知立方体的体积求它的边长,这是一个典型的求数的立方根的问题.教科书从这个典型问题出发,引出立方根的概念和开立方运算.接着,教科书指出,和平方运算与开平方运算互为逆运算一样,立方运算与开立方运算也互逆,并通过一个“探究”栏目,运用这种互逆关系求一些正数、负数和0的立方根.在此基础上归纳出数的立方根的特征:“正数的立方根是正数,负数的立方根是负数,0的立方根是0”.最后,教科书介绍了立方根的符号表示,并利用这种符号表示探讨了立方根的一条性质().  学习了平方根、立方根以及开方运算后,教科书在第三节安排了实数.本节首先设置一个“探究”拦目,要求学生将一些有理数转化为小数的形式,并分析这些小数的共同特点,进而归纳出有理数都可以化成有限小数或无限循环小数的形式,然后直接指出反过来的结论也成立,即任何有限小数和无限循环小数都是有理数,这样教科书就将有理数与有限小数和无限循环小数统一起来.在此基础上指出,像,,等只能化成无限不循环小数的数就是无理数,从而引出无理数的概念.教科书采用这种与有理数对照的方法引出无理数,有利于揭示有理数和无理数的本质区别,也有助于学生理解“有理数和无理数统称实数”这个构造性定义.为了是学生全面了解实数的概念,教科书根据不同的标准对实数进行分类,揭示出实数的内部结构.随着无理数的引入,实数概念的出现,数的范围由有理数扩充到实数,在这个扩充过程中,既体现了概念、运算等的一致性,又体现了它们的发展变化.教科书通过几方面的例子说明了这种一致性和发展变化.首先,教科书通过探究在数轴上画出表示和的点,说明了无理数也可以用数轴上的点来表示,并指出当数由有理数扩充到实数后,直线上的点与实数就是一一对应的;接着,教科书通过设置思考问题,让学生体会,在有理数范围内成立的一些概念(如绝对值、相反数等)在实数范围内仍然成立;最后,教科书结合具体例子,指出有理数的运算(如加、减、乘、除、乘方运算等),以及运算律、运算性质(如交换律、分配律、结合律等)在实数范围内仍然成立,并且可以进行新的运算(如正数和0可以进行开平方运算、任何一个实数可以进行开立方运算)等. 与大纲教材相比,本章内容在原教科书“数的开方”一章的基础上,适当增加了有关实数运算的内容(实数的运算在本套书“二次根式”一章继续学习);从内容安排上看,改变原教科书先讲平方根,将算术平方根作为平方根一种特例的做法,而是从实际问题出发,先讲算术平方根,再讲平方根,加强了与实际的联系;在教学目标方面,强调所有学生都应会使用计算器进行开平方、开立方运算,加强了对估算的要求等.  (三)本章学习目标  1.了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根. 2.了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根. 3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值. 4.能用有理数估计无理数的大致范围 
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服