1、第一章有理数一、全章概况:本章主要分两部分:有理数的认识,有理数的运算。二、本章教学目标1、知识与技能(1)理解有理数的有关概念及其分类。(2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。(3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。(4)能运用有理数的有关知识解决一些简单的实际问题。2、过程与方法(1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自主地学习数学的习惯。(2)通过对有理数的加、减、
2、乘、除、乘方的学习,培养学生独立思考、认真完成作业的态度,提高运算能力,逐步激发学生的创新意识。3、情感、态度与价值观(1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。(2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高学生分析问题和解决问题的能力。三、本章重点难点:1、重点:有理数的运算。2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。四、本章教学要求认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后引出用正、负数表示这些具有相反意义的量,
3、理解有理数的意义时,要注意运算数轴这个直观的模型。无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在数学的学习中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导学生使用计算器。注意教学反思。关注学生的学习过程,及时调整教学,促进师生共同改进。1.1具有相反意义的量教学目标:1、知识与技能(1)通过实例,感受引入负数的必要性和合理性,能应
4、用正、负数表示生活中具有相反意义的量。(2)理解有理数的意义,体会有理数应用的广泛性。2、过程与方法通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。重点、难点:1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。2、难点:对负数的理解以及正确地对有理数进行分类。教学过程:一、创设情景,导入新课大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和0(小数包括在分数之中),它们都是由于实际需要而产生的。为了表示一个人、两
5、只手、,我们用到整数1,2,。为了表示“没有人”、“没有羊”、,我们要用到0。但在实际生活中,还有许多量不能用上述所说的自然数、0或分数、小数表示。二、合作交流,解读探究1、某市某一天的最高温度是零上5,最低温度是零下5。要表示这两个温度,如果只用小学学过的数,都记作5,就不能把它们区别清楚。它们是具有相反意义的两个量。在现实生活中,像这样的相反意义的量还有很多,如珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。 “运进”和“运出”,其意义是相反的。存折上,银行是怎么区分存款和取款的?同学们能举出例子吗?学生回答后,教师提出:怎样区别相反意义的量
6、才好呢?待学生思考后,请学生回答、评议、补充。教师小结:同学们成了发明家.甲同学说,用不同的颜色来区分,如红色5表示零下5,黑色5表示零上5;乙同学说,在数字前面加不同的符号来区分,如5表示零上5,5表示零下5,其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”如今这种方法在记账的时候还使用所谓“赤字”,就是这样来的。现在,数学中采用符号来区分,规定零上5记作+5(读作正5)或5,把零下5记作-5(读作负5)。这样,只要在小学里学过的数前面加上“+”或“-”,就把两个相反意义的量简明地表示出来了。让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,
7、记作+8848米;低于海平面155米,记作-155米。教师讲解:一对意义相反的量,一个用正数表示,另一个用负数表示。强调,0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,0不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。把正数和0称为非负数。故事:虚伪的零下 在日常生活和生产中存在着大量具有相反意义的量,引入负数完全是实际的需要。 历史上,负数曾经受到过非议,直到16世纪,欧洲大多数的数学家都还不承认负数,他们觉得“0就是什么也没有”,还有什么东西能够比“什么也没有”还小呢?德国数学家
8、史蒂芬说:“负数是虚伪的零下”,仅是些记号而已。法国数学家帕斯卡则认为,从0减去4是胡说八道。最早发现负数的是我们中国人,我国的“孟子”一书中就有“邻国之民不加少,寡人之民不加多”其中“加少”就是减少,即加上了负数的意思。秦汉时的古代算经“九章算术”的方程里明确提出:以卖为正,则买为负;余钱为正,亏钱为负。三国时魏国人刘徽在“九章算术”的注解中,则更进一步概括了正、负数的意义,他明确提出,两种得失相反的数,分别叫做正数和负数。负数概念的产生,是世界科学史上的一项重大的发现,也是我国人民对数学发展做出的一项重大贡献,我们应该引以为豪!另外,印度数学家在公元625年(比我国迟几百年),婆罗摩捷多已
9、经提出了负数的概念。他用“财产”表示正数,用“欠债表示负数,并用它们解释正负数的加减法运算。0只表示没有吗?(1)空罐中的金币数量;(2)温度中的0;(3)海平面的高度;(4)标准水位;(5)身高比较的基准;(6)正数和负数的界点; 0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.2、给出新的整数、分数概念引进负数后,数的范围扩大了。把正整数、负整数和0统称为整数,正分数、负分数统称为分数。3、给出有理数的概念整数和分数统称为有理数。 4、有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同。根据有理数的定义可将有理数分成两类:整数和分数。有理
10、数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充。教师小结:按有理数的符号分为三类:正有理数、负有理数和0。在有理数范围内,正数和0统称为非负数。向学生强调:分类可以根据不同的需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。三、应用迁移,巩固提高例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+,0.33,0,-,-9练1.判断下列各题是否是具有相反意义的量,(1) 上升和下降;(2) 运进货物100吨和下降100米;(3)向东走10米和向西走1米。2.(1) 收入10万元,记作+10万元,支出1000元记作_。(2) 水
11、位升高1.2米,记作+1.2米,那么-3.0米表示_。3.下列说法正确的是( )A 正数、0、负数统称为有理数 B 分数、整数统称为有理数C 正有理数、负有理数统称为有理数 D 以上都不对4. 已知1, , , 0, -37,0.2, ,-0.01,-20, ,其中整数有_,负分数有_。课堂练习:课本练习四、总结反思引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0。五、课后作业:课本习题1.1第1,2,3,4,5题。