1、一次函数的应用教学目标:1.知识与技能:理解作函数图像的方法与代数方法各自的特点;2.过程与方法:掌握利用二元一次方程确定一次函数的表达式;3.情感态度与价值观:进一步理解方程与函数的联系。教学重点:二元一次方程和一次函数的关系;能根据一次函数的图象求二元一次方程的近似解教学难点:方程和函数之间的对应关系即数形结合的意识和能力教学过程一 预学自学课本P138-139二、合作交流、解读探究问题:1方程x+y=5的解有多少个?写出其中的几个解来方程x+y=5的解有无数多个,如:x=-1 x=0 x=1 x=2 x=3y=6 y=5 y=4 y= 3 y=2 等2在直角坐标系中分别描出以这些解为坐标
2、的点,它们在一次函数y=5x的图像上吗?3.在一次函数y=5x的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5x的图像相同吗?归纳:在上面直角坐标系中描出以x+y=5的解为坐标的点,我们很容易发现这些点都在一次函数y=5x的图象上在函数y=5x的图象上任取一点,它的坐标一定适合方程x+y=5以x+y=5的解为坐标的所有点组成的图象与一次函数y=5x的图象是相同的综上所述,二元一次方程和一次函数的图象有如下关系:(1)以二元一次方程的解为坐标的点都在相应的函数图象上(2)反过来,一次函数图象上的点的坐标都适合相应的二元一次方程问:你
3、能找出下面两个问题之间的联系吗?(1)解方程:3x-6=0.(2)已知一次函数y=3x-6,问x取何值时,y=0?学生讨论后归纳:一般地,一次函数y=kx+b的图像与x轴的交点的横坐标是一元一次方程kx+b=0的解。任何一个一元一次方程kx+b=0的解,就是一次函数y=kx+b的图像与x轴的交点的横坐标。 例1、已知一次函数y=2x+6,求这个函数的图像与x轴交点的横坐标。 解法一:令y=0代入 解法二:画图(略)练习:教材P139页 练习 1、2、3题三、应用迁移、巩固提高xyo1讨论:在同一直角坐标系内分别作出一次函数y=5x和y=2x1的图像,这两个图像有交点吗?交点的坐标与方程组 x+
4、y=5 2xy=1 的解有什么关系?你能说明理由吗?一次函数y=5x和y=2x1的图像的交点为(2,3),因此, x=2 就是方程组 x+y=5 y=32x y=1的解。用作图象的方法解方程组 x-2y= - 2 2x y=2 解:由x-2y= - 2可得y= ,同理,由2x y=2可得y=2x 2,在同坐标系中作出一次函数y= 的图像和y=2x 2的图像,观察图像,得两直线交于点(2,2),所以方程组 x-2y= - 2 2x y=2 的解是 x = 2 y= 3 同学们你从本题中感悟到什么?归纳:我们解二元一次方程组除了代入法和加减法 外还可以用图像法,那么用作图法来解方程组的步骤如下:1
5、、把二元一次方程化成一次函数的形式;2、在直角坐标系中画出两个一次函数的图像,并标出交点。3、交点坐标就是方程组的解。 练习:1、用作图象的方法解方程组 2x+y=4 2x-3y=12 复习回忆、引入新课同学们:什么叫二元一次方程及二元一次方程的解?xyo1一次函数的图像是什么?如图,求一次函数的图像的解析式二、合作交流、解读探究问题:1方程x+y=5的解有多少个?写出其中的几个解来方程x+y=5的解有无数多个,如:x=-1 x=0 x=1 x=2 x=3y=6 y=5 y=4 y= 3 y=2 等2在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数y=5x的图像上吗?3.在一次函数y=
6、5x的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5x的图像相同吗?归纳:在上面直角坐标系中描出以x+y=5的解为坐标的点,我们很容易发现这些点都在一次函数y=5x的图象上在函数y=5x的图象上任取一点,它的坐标一定适合方程x+y=5以x+y=5的解为坐标的所有点组成的图象与一次函数y=5x的图象是相同的综上所述,二元一次方程和一次函数的图象有如下关系:(1)以二元一次方程的解为坐标的点都在相应的函数图象上(2)反过来,一次函数图象上的点的坐标都适合相应的二元一次方程问:你能找出下面两个问题之间的联系吗?(1)解方程:3x-6=0
7、.(2)已知一次函数y=3x-6,问x取何值时,y=0?学生讨论后归纳:一般地,一次函数y=kx+b的图像与x轴的交点的横坐标是一元一次方程kx+b=0的解。任何一个一元一次方程kx+b=0的解,就是一次函数y=kx+b的图像与x轴的交点的横坐标。精讲 例1、已知一次函数y=2x+6,求这个函数的图像与x轴交点的横坐标。 解法一:令y=0代入 解法二:画图(略)练习:教材P139页 练习 1、2、3题三、应用迁移、巩固提升xyo1讨论:在同一直角坐标系内分别作出一次函数y=5x和y=2x1的图像,这两个图像有交点吗?交点的坐标与方程组 x+y=5 2xy=1 的解有什么关系?你能说明理由吗?一
8、次函数y=5x和y=2x1的图像的交点为(2,3),因此, x=2 就是方程组 x+y=5 y=32x y=1的解。用作图象的方法解方程组 x-2y= - 2 2x y=2 解:由x-2y= - 2可得y= ,同理,由2x y=2可得y=2x 2,在同坐标系中作出一次函数y= 的图像和y=2x 2的图像,观察图像,得两直线交于点(2,2),所以方程组 x-2y= - 2 2x y=2 的解是 x = 2 y= 3 同学们你从本题中感悟到什么?归纳:我们解二元一次方程组除了代入法和加减法 外还可以用图像法,那么用作图法来解方程组的步骤如下:1、把二元一次方程化成一次函数的形式;2、在直角坐标系中
9、画出两个一次函数的图像,并标出交点。3、交点坐标就是方程组的解。 练习:1、用作图象的方法解方程组 2x+y=4 2x-3y=12 由2x+y=4 得 y= -2x+4 由 2x-3y=12 可得 y= 在同一直角坐标系中作出函数y= -2x+4和函数y=的图像,观察图像可得交点为(3,-2),所以方程组xyO246-442x+y=4 的解是 x =3 2x-3y=12 y= - 2在图中的两直线l1、l2的交点坐标可以看作 的解。 答案: y=1+2x y=4 - x试一试1、有一组数同时适合方程x+y=2和x+y=5吗? 2、一次函数y=2 x,y=5 - x的图像之间有何关系?你能从中“
10、悟”出些什么吗?学生经过尝试是很容易发现x+y=2和x+y=5时没有一组数同时适合这两个二元一次方程的即无解对于一次函数y=2x,y=5x的图象可以让学生作出它们的图象(下图)观察可以发现它们的图象(直线)是互相平行的,即它们无公共点结果:我们从中可以“悟”出:方程组的解与函数图象交点之间的关系:当函数的图象有交点时,说明相应的二元一次方程组有解;当函数的图象(直线)平行即无交点时,说明相应的二元一次方程组无解反之也成立我们可以得到:二元一次方程组无解一次函数的图像平行(无交点) 二元一次方程组有一解一次函数的图像相交(有一个交点) 二元一次方程组有无数个解一次函数的图像重合(有无数个交点)四、小结 1、二元一次方程的图像实际上就是一次函数的图像 2、用图像法可以解二元一次方程组,原来我们还可以用几何的图像法来解代数问题。五、作业课:P140141 T5家:同步教学反思: