1、2014年高考文科数学试题分类汇编:概率一、选择填空题12014江西卷3 掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D. 【答案】B22014湖南卷5 在区间2,3上随机选取一个数X,则X1的概率为()A. B. C. D. 【答案】B32014陕西卷6 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A. B. C. D. 【答案】B42014辽宁卷6 若将一个质点随机投入如图所示的长方形ABCD中,其中AB2,BC1,则质点落在以AB为直径的半圆内的概率是() A. B. C. D. 【答案】B52014湖北卷5 随机掷两枚
2、质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则() 【答案】CAp1p2p3 Bp2p1p3 Cp1p3p2 Dp3p1p2 12345612345672345678345678945678910567891011678910111262014江苏卷4 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_【答案】72014新课标全国卷13 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_【答案】82014全国新课标卷13 将2本不同的数学书和
3、1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_【答案】92014浙江卷14 在3张奖券中有一、二等奖各1张,另1张无奖甲、乙两人各抽取1张,两人都中奖的概率是_【答案】102014广东卷12 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为_【答案】112014福建卷13 如图所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_【答案】0.18122014重庆卷15 某校早上8:00开始上课,假设该校学生小张与小王在早上7:307:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率
4、为_(用数字作答) 【答案】二、解答题:1 2014天津卷15 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为A,B,A,C,A,X,A,Y,A,Z,B,C,B,X,B,Y,B,Z,C,X,C,Y,C,Z,X,Y,X,Z,Y,Z,共15种(2)选出的2人来自不同年级且恰有1
5、名男同学和1名女同学的所有可能结果为A,Y,A,Z,B,X,B,Z,C,X,C,Y,共6种因此,事件M发生的概率P(M).22014四川卷16 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足abc”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率解:(1)由题意,(a,b,c)所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2
6、,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种设“抽取的卡片上的数字满足abc”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A).因此,“抽取的卡片上的数字满足abc”的概率为.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种所以P(
7、B)1P(B)1.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.32014陕西卷19 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01000200030004000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率解:(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概
8、率得P(A)0.15,P(B)0.12.由于投保金额为2800元,所以赔付金额大于投保金额的概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,得样本车辆中车主为新司机的有0.11000100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.212024(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为0.24.由频率估计概率得P(C)0.24.42014福建卷20 根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为10354085美元为中等偏下收入国家;人均GDP为408512 616美
9、元为中等偏上收入国家;人均GDP不低于12 616美元为高收入国家某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:行政区区人口占城市人口比例区人均GDP(单位:美元)A25%8000B30%4000C15%6000D10%3000E20%10 000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率解:(1)设该城市人口总数为a,则该城市人均GDP为6400(美元)因为64004085,12 616),所以该城市人均GDP达到了中等偏上收入国家标准(2)“从5个行政区中随
10、机抽取2个”的所有的基本事件是:A,B,A,C,A,D,A,E,B,C,B,D,B,E,C,D,C,E,D,E,共10个设事件M为“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”,则事件M包含的基本事件是:A,C,A,E,C,E,共3个所以所求概率为P(M).52014全国卷20 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k台设备供甲、乙、丙、丁使用若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值解:记A1表示事件:同一工作日乙
11、、丙中恰有i人需使用设备,i0,1,2.B表示事件:甲需使用设备C表示事件:丁需使用设备D表示事件:同一工作日至少3人需使用设备E表示事件:同一工作日4人需使用设备F表示事件:同一工作日需使用设备的人数大于k.(1)因为P(B)0.6,P(C)0.4,P(Ai)C0.52,i0,1,2,所以P(D)P(A1BCA2BA2BC)P(A1BC)P(A2B)P(A2BC)P(A1)P(B)P(C)P(A2)P(B)P(A2)P(B)P(C)0.31.(2)由(1)知,若k2,则P(F)0.310.1,P(E)P(BCA2)P(B)P(C)P(A2)0.06.若k3,则P(F)0.060.1,所以k的
12、最小值为3.62014江西卷21 将连续正整数1,2,n(nN*)从小到大排列构成一个数123n,F(n)为这个数的位数(如n12时,此数为123456789101112,共有15个数字,F(12)15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率(1)求p(100);(2)当n2014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)f(n)g(n),Sn|h(n)1,n100,nN*,求当nS时p(n)的最大值解:(1)当n100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100).(2
13、)F(n)(3)当nb(1b9,bN*),g(n)0;当n10kb(1k9,0b9,kN*,bN)时,g(n)k;当n100时,g(n)11,即g(n)1k9,0b9,kN*,bN,同理有f(n)由h(n)f(n)g(n)1,可知n9,19,29,39,49,59,69,79,89,90,所以当n100时,S9,19,29,39,49,59,69,79,89,90当n9时,p(9)0.当n90时,p(90).当n10k9(1k8,kN*)时,p(n),由y关于k单调递增,故当n10k9(1k8,kN*)时,p(n)的最大值为p(89).又,所以当nS时,p(n)的最大值为.72014江苏卷22
14、 盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X)解:(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P.(2)随机变量X所有可能的取值为2,3,4.X4表示的随机事件是“取到的4个球是4个红球”,故P(X4);X3表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P(X3);于是P(X2)1P(X3)P(X4)1.所以随机变量X的概率分布如下表:X234P因此随机变量X的数学期望E(X)234.