资源描述
数 学 奥 林 匹 克 模 拟 试 卷(答案)
第[1]道题答案:
99
100,98是偶数,99是3倍数,从而知97是1~100中最大的质数,又最小的质数是2,所以最小的质数与最大的质数的和是99.
第[2]道题答案:
3,3,5,8
根据这四个数中只有一个是合数,可知其他三个数是质数,将360分解质因数得:360=222533
所以,这四个数是3,3,5和8.
第[3]道题答案:
1992
依题意,将232323分解质因数得
232323=2310101
=23371337
从而,全部不同质因数之和
=23+3+7+13+37=83
所以,AB=8383=1992.
第[4]道题答案:
36岁
根据三个学生的年龄乘积是1620的条件,先把1620分解质因数,然后再根据他们的年龄一个比一个大3岁的条件进行组合.
1620=2233335
=91215
所以,他们年龄的和是9+12+15=36(岁)
第[5]道题答案:
83,24
先把1992分解质因数,再根据两个数的和是107进行组合
1992=222383
=2483
24+83=107
所以,这两个数分别是83和24.
第[6]道题答案:
14
根据两数之积能整除4875,把4875分解质因数,再根据两数之和为64进行组合.
4875=355513
=(313)(55)5
=(3925)5
由此推得这两数为39和25.它们的差是39-25=14.
第[7]道题答案:
15
解法一
因为相同两数相加之和为原数的2倍,相减之差为零,相乘之积为原数乘以原数,相除之商为1.所以原数的2倍加上原数乘以原数应是256-1=255.把255分解质因数得:
255=3517
=35(15+2)
=152+1515
所以,这个数是15.
解法二
依题意,原数的2倍+0+原数原数+1=256,即
原数的2倍+原数原数=256-1
原数的2倍+原数原数=255
把255分解质因数得
255=3517
=15(15+2)
=152+1515
所以,这个数是15.
第[8]道题答案:
21、22、65、76、153;34、39、44、45、133.
先把10个数分别分解质因数,然后根据两组中所包含质因数必须相等把这10个数分成两组:
21=37 22=211
34=217 39=313
44=2211 45=335
65=513 76=2219
133=719 153=3317
由此可见,这10个数中质因数共有6个2,6个3,2个5,2个7,2个11,2个13,2个17,2个19.所以,每组数中应包含3个2,3个3,5、7、11、13、17和19各一个.于是,可以这样分组:
第一组数是:21、22、65、76、153;
第二组数是:34、39、44、45、133.
[注]若将分为两组拓广分为三组,则得到一个类似的问题(1990年宁波市江北区小学五年级数学竞赛试题):
把20,26,33,35,39,42,44,55,91等九个数分成三组,使每组的数的乘积相等.
答案是如下分法即可:
第一组:20,33,91;
第二组:44,35,39;
第三组:26,42,55.
第[9]道题答案:
12
设这样的两位数的十位数字为A,个位数字为B,由题意依据数的组成知识,可知100A+B能被10A+B整除.
因为100A+B=90A+(10A+B),由数的整除性质可知90A能被10A+B整除.这样只要把90A分解组合,就可以推出符合条件的两位数.
90A=2325A
A
1
2
3
4
5
6
7
8
9
90A
109
156
185
209
309
409
458
509
609
709
809
909
10,15
18
20
30
40,45
50
60
70
80
90
所以,符合条件的两位数共12个.
第[10]道题答案:
14;3岁,3岁,8岁
因为三个孩子年龄的积是72,所以,我们把72分解为三个因数(不一定是质因数)的积,因为小孩的年龄一般是指不超过15岁,所以所有不同的乘积式是
72=1612=189
=2312=249
=266=338
=346
三个因数的和分别为:19、18、17、15、14、14、13.其中只有两个和是相等的,都等于14.14就是主人家的楼号.如果楼号不是14,客人马上可以作出判断.反之客人无法作出判断,说明楼号正是14.亦即三个孩子年龄的和为14.此时三个孩子的年龄有两种可能:2岁、6岁、6岁;或3岁、3岁、8岁.当他看到有两个孩子很小时,就可以断定这三个孩子的年龄分别是3岁、3岁、8岁.主人家的楼号是14号.
第[11]道题答案:
因为两个质数之和可能是质数如2+3=5,也可能是合数如3+5=8,因此甲和乙的说法是错误的,只有丙说得对.
第[12]道题答案:
从三张卡片中任抽一张,有三种可能,即一位数有三个,分别为1、2、3,其中只有2、3是质数.
从三张卡片中任抽二张,组成的两位数共六个.但个位数字是2的两位数和个位与十位上数字之和是3的倍数的两位数,都不是质数.所以,两位数的质数只有13,23,31.
因为1+2+3=6,6能被3整除,所以由1、2、3按任意次序排起来所得的三位数,都不是质数.
故满足要求的质数有2、3、13、23、31这五个.
[注]这里采用边列举、边排除的策略求解.在抽二张卡片时,也可将得到六个两位数全部列举出来:12,13,21,23,31,32.再将三个合数12,21,32排除即可.
第[13]道题答案:
100以内所有奇数之和是
1+3+5+…+99=2500,
从中减去100以内奇数中7的倍数与11的倍数之和
7(1+3+…+13)+11(1+3+…+9)=618,
最后再加上一个711=77(因为上面减去了两次77),所以最终答数为
2500-618+77=1959.
[注]上面解题过程中100以内奇数里减去两个不同质数7与11的倍数,再加上一个公倍数711,这里限定在100以内,如果不是100以内,而是1000以内或更大的数时,减去的倍数就更多些而返回加上的公倍数有711的1倍,3倍,…也更多些,这实质上是“包含与排除”的思路.
第[14]道题答案:
依题意知,每射一箭的环数,只能是下列11个数中的一个
0,1,2,3,4,5,6,7,8,9,10.
而甲、乙5箭总环数的积17640,这说明在甲、乙5箭得到的环数里没有0和10.
而1764=1223377是由5箭的环数乘出来的,于是推知每人有两箭中的环数都是7,从而可知另外3箭的环数是5个数
1,2,2,3,3
经过适当的分组之后相乘而得到的,可能的情形有5种:
(1)1,4,9;
(2)1,6,6;
(3)2,2,9;
(4)2,3,6;
(5)3,3,4.
因此,两人5箭的环数有5种可能:
7,7,1,4,9 和是28;
7,7,1,6,6 和是27;
7,7,2,2,9 和是27;
7,7,2,3,6 和是25;
7,7,3,3,4 和是24。
∵甲、乙的总环数相差4,甲的总环数少.
∴甲的总环数是24,乙的总环数是28.
展开阅读全文