资源描述
第2课时 用配方法求解较复杂的一元二次方程
课 题
第2课时 用配方法求解较复杂的一元二次方程
课型
新授课
教学目标
1.会用配方法解二次项系数不为1的一元二次方程.
2.了解用配方法解一元二次方程的基本步骤.
教学重点
用配方法求解一元二次方程.
教学难点
理解配方法.
教学方法
讲练结合法
教学后记
教 学 内 容 及 过 程
学生活动
一、复习:
1、什么叫配方法?
2、怎样配方?方程两边同加上一次项系数一半的平方。
3、解方程:
(1)x2+4x+3=0 (2)x2―4x+2=0
二、新授:
1、例题讲析:
例3:解方程:3x2+8x―3=0
分析:将二次项系数化为1后,用配方法解此方程。
解:两边都除以3,得: x2+x―1=0
移项,得:x2+x = 1
配方,得:x2+x+()2= 1+()2 (方程两边都加上一次项系数一半的平方)
(x+)2=()2
即:x+=± 所以x1=,x2=―3
2、用配方法解一元二次方程的步骤:
(1)把二次项系数化为1;
(2)移项,方程的一边为二次项和一次项,另一边为常数项。
(3)方程两边同时加上一次项系数一半的平方。
(4)用直接开平方法求出方程的根。
3、做一做:
一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系: h=15 t―5t2
小球何时能达到10m高?
三、巩固:
练习:P39随堂练习
四、小结:
用配方法解一元二次方程的步骤。
(1)化二次项系数为1;
(2)移项;
(3)配方:
(4)求根。
五、作业:
课本P40习题2.4 1、2
板书设计:
一、 解方程
二、 做一做,读一读
三、 课时小结
四、 课后作业
学生回答
演板
由学生共同小结
这节课我们利用配方法解决了二次项系数不为1或者一次项系数不为偶数等较复杂的一元二次方程,由此我们归纳出配方法的基本步骤
展开阅读全文