1、1.2直角三角形(二) 教学目标:1、进一步掌握推理证明的方法,发展演绎推理能力。 2、能够证明直角三角形全等的“HL”判定定理既解决实际问题。 教学重点:能够证明直角三角形全等的“HL”判定定理。并且用纸解决问题。 教学难点:证明“HL”定理的思路的探究和分析。 教学过程:一、 复习提问1、判断两个三角形全等的方法有哪几种?2、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。(思考交流引导学生分析证明思路,写出证明过程)二、 探究两边及其一个角对应相等的两个三角形全等吗?如果相等说明理由。如果不相等,应如何改变条件?用自己的语言清楚地说明,并写出证明
2、过程。问题1,此定理适用于什么样的三角形?(适用于直角三角形)AOB 2、判定直角三角形的方法有哪些,分别说出?(HL,SAS,ASA,AAS,SSS.先考虑HL,在考虑另外四种方法。)三、 做一做 如图利用刻度尺和三角板,能否做出这个角的角平分线?并证明。(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)四、练习 随堂练习P23-1 判断命题的真假,并说明理由1、 锐角对应相等的两个直角三角形全等。2、 斜边及一锐角对应相等的两个直角三角形全等。3、 两条直角边对应相等的两个直角三角形全等。4、 一条
3、直角边和另一条直角边上的中线队以相等的两个直角三角形全等。(对于假的命题要举出反例,真命题要说明理由。教师分析讲解。)五、议一议ABCD 如图:已知ACB=BDA=90。 要使 ACBBDA,还需要什么条件?把他们写出来,并说明理由。(教学中给予学生时间和空间,鼓励学生积极思考,并在独立思考的基础上,通过交流,获得不同的答案,并将一种方法写出证明过程。) 六、 小结:1、本节课学习了哪些知识? 2、还有那一些方面的收获?七、作业:1、基础作业:P23页习题1.5 1、2。 2、拓展作业:目标检测3、预习作业: 预习:线段的垂直平分线。板书设计:1.2直角三角形(二)斜边直角边定理: 如图:已知ACB=BDA=90。 要使 ACBBDA,还需要什么条件?把他们写出来,并说明理由。 课后记: