1、平方根教学目标:知识与技能1、了解平方根的概念,会用根号表示一个数的平方根。 2、会求一个正数的平方根。 3、了解平方根和算术平方根的性质。 4、了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。过程与方法通过回顾算术平方根的有关知识,能正确地进行推理和判断,会求一个数和平方根。情感与价值观1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.教学重点:了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。教学难点:平方根和算术平方根的区别。负数没有平方根,即负数不能进行开
2、平方运算。教学过程:一、复习提问1、算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。2、9的算术平方根是 ,3的平方是 ,还有其他的数的平方是9吗?二、讲授新课:1.想一想平方等于的数有几个?平方等于0.64的数呢?学生活动:学生思考,然后交流,得出平方根的定义。2.教师活动:一般地,如果一个数的平方等于,即,那么,这个数就叫做的平方根。也叫做二次方根。3和3的平方都是9,即9的平方根有两个3和3;9的算术平方根只有个,是3。3.学生活动:求出下列各数的平方根。16,0,25,三、议一议:(1)一个正数的有几个平方根?(2)0有几个平方根?(3)负数呢?教师活动:一个正
3、数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。学生活动:正数的两个平方根有什么关系吗?讨论,交流得出:一个正数有两个平方根,一个是的算术平方根,“”,另一个是“”,它们互为相反数。这两个平方根合起来,可以记做“”,读作“正、负根号”。 开平方:求一个数的平方根的运算,叫做开平方。其中叫做被开方数。(已知指数和幂,求底数的运算是开方运算)教师活动开平方和平方互为逆运算,我们可以利用平方运算来求平方根。四、例题精析:例1 求下列各数的平方根:(1)64,(2),(3)0.0004, (4)(-25)2, (5)11注意书写格式。五、随堂练习:P29 1、2六、想一想师生互动,讨论交流得出:0)七、小结:1. 平方根的定义、表示方法、求法、性质。平方根和算术平方根的区别和联系。2.使学生学到由特殊到一般的归纳法。八、作业: 习题2.4 4、5题