1、多边形的内角和 教学目标知识与技能1、了解多边形的内角、外角等概念;2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算过程与方法在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯情感、态度与价值观体会数学与现实生活的联系,增强克服困难的勇气和信心重点难点多边形的内角和与多边形的外角和公式是重点;多边形的内角和定理的推导是难点。教学过程一、复习导入我们已经证明了三角形的内角和为180,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360,现在你能利用三角形的内角和定理证明吗?二、多边形的内角和投影1如图,从四边形的一个顶点
2、出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度? ABCD可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=ABD的内角和+BDC的内角和=2180=360。类似地,你能知道五边形、六边形 n边形的内角和是多少度吗? 投影2观察下面的图形,填空: 五边形 六边形 从五边形一个顶点出发可以引 对角线,它们将五边形分成 三角形,五边形的内角和等于 ;从六边形一个顶点出发可以引 对角线,它们将六边形分成 三角形,六边形的内角和等于 ;投影3从n边形一个顶点出发,可以引 对角线,它们将n边形分成 三角形,n边形的内角和等于 。n边形的内角和等于(n一2)
3、180从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?分法一 投影3如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形。五边形的内角和为5180一2180(52)180=540。 图1 图2分法二 投影4如图2,在边AB上取一点O,连OE、OD、OC,则可以(51)个三角形。五边形的内角和为(51)180一180(52)180如果把五边形换成n边形,用同样的方法可以得到n边形内角和(n一2)180三、例题投影6例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABCD
4、中,AC180,求B与D的关系 分析:A、B、C、D有什么关系?解:A+B+C+D=(42)180=360又AC180BD= 360(AC)=180这就是说,如果四边形一组对角互补,那么另一组对角也互补投影7例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?如图,已知1,2,3,4,5,6分别为六边形ABCDEF的外角,求1+2+3+4+5+6的值分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:1+BAF=180 2+ABC=180 3+BAD=180 4+CDE=180 5+DEF=180 6+EFA=1801+
5、BAF+2+ABC+3+BAD+4+CDE+5+DEF+6+EFA=6180又1+2+3+4+5+6=4180BAF+ABC+BAD+CDE+DEF+EFA=6180-4180=360这就是说,六边形形的外角和为360。如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360。对此,我们也可以这样来理解。投影8如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360四、课堂练习课本24頁1、2、3题。五、课堂小结n边形的内角和是多少度?n边形的外角和是多少度?六、作业:七、教后记