1、零指数幂与负整数指数幂知识技能目标1.使学生理解a0的意义,并掌握a01(a0);2.使学生理解a-n(n是正整数)的意义,并掌握a-n(a0,n是正整数);3.使学生理解并掌握幂的运算律对于整数指数都成立,并会正确运用过程性目标1.使学生理解引进a0、a-n(n是正整数)规定的必要性,体会到数学的严密性和逻辑性;2.使学生在复习正整数指数幂的运算律时,体会到它对0指数幂、负整数整数指数幂的运算也适用,能把运算律一起记住,并会正确运用情感态度目标简洁的内容,在形式上尽可能做到活泼,从而培养学生之间的感情,有利于形成和发展学生的数学观念和思维方式重点和难点重点:幂与负整数指数幂;难点:幂与负整数
2、指数幂的有意义的条件教学过程一、复习导入问题1 在8年级上册,我们学习过同底数幂的除法公式。谁来给大家说说同底数幂的除法法则是什么?用字母表示呢?,有一个附加条件:mn,即被除数的指数大于除数的指数当被除数的指数不大于除数的指数,即mn或mn时,情况怎样呢?二、探究归纳先考察被除数的指数等于除数的指数的情况例如考察下列算式:5252,103103,a5a5(a0)一方面,如果仿照同底数幂的除法公式来计算,得525252-250,103103103-3100,a5a5a5-5a0(a0)另一方面,由于这几个式子的被除式等于除式,由除法的意义可知,所得的商都等于1概括由此启发,我们规定:501,1
3、001,a01(a0)这就是说:任何不等于零的数的零次幂都等于1注 零的零次幂没有意义我们再来考察被除数的指数小于除数的指数的情况,例如考察下列算式:5255,103107一方面,如果照同底数幂的除法公式来计算,得525552-55-3,103107103-710-4另一方面,我们可利用约分,直接算出这两个式子的结果为,概括 由此启发,我们规定,一般地,我们规定(a0,n是正整数)这就是说,任何不等于零的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数三、 例题讲解。 例题1:计算(1) (2) 例题2:用小数表示下列各数。(1) (2)四、 实践应用 在括号内填写各式成立的条件:(1)x
4、01; ( )(2)(x-3)01; ( )(3)(a-b)01; ( )(4)a3a0a3;( )(5)(an)0an0;( )(6)(a2-b2)01 ( )(答案:x0;x3;ab;a0;a0;a2b2或|a|b|) 现在,我们已经引进了零指数幂和负整数指数幂,指数的范围已经扩大到了全体整数.上述幂的运算性质是否还成立呢?也就是说,以上这些性质中,原来的限制是否可以取消,只要m,n是整数就可以了呢?我们不妨取一些特殊值,来检验一下上述性质是否成立。(1)同底数幂的乘、除法amanam+n;amanam-n;(2)幂的乘方(am)namn;(3)积的乘方(ab)nanbn进行有关0次幂和负整数幂的运算时,要注意底数一定不能为0,特别是当底数是代数式时,要使底数的整体不能为0。五、检测反馈1计算:(1)(-0.1)0;(2);(3)2-2; (4) 2.计算:(1)510254;(2)(-117)0;(3)4-2;(4)