1、2.3立方根教学目标:1、了解立方根的概念,会用立方根表示一个数的立方根。 2、能用立方根运算求某些数的立方根,了解立方根与立方互为逆运算。 3、了解立方根的性质及立方根与平方根的区别。教学重点:立方根的概念。教学难点:求一个数的立方根。教学流程:一、情境导入1、平方根的概念。 若一个正方形的面积为,则这个正方形的边长为 ; 若一个正方体的体积是,那么这个正方体的棱长为多少呢?2、某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来8倍,那么她的半径是原储气罐半径的多少倍?如果储气罐是原来的4倍呢?二、立方根的概念 一般地,如果一个数的的立方等于,即,
2、那么这个数就叫做的立方根(也叫做三次方根)。记作,即。 如2是8的立方根,即=2;三、做一做学生活动:(1)2的立方等于多少?是否有其他的数,他的立方等于8?(2)3的立方等于多少?是否有其他的数,它的立方也是27?教师组织交流得出:每个数都有一个立方根。 正数的立方根是正数,0的立方根是0,负数的立方根是负数。四、想一想立方根与平方根有什么区别?师生互动: 学生讨论后,进行交流,教师要对学生的回答予以肯定。五、开立方 求一个数的立方根的运算叫做开立方。其中叫做被开方数。 和开平方与平方运算互为逆运算一样,开立方与立方运算互为逆运算。例1 求下列各数的立方根。(1); (2); (3)0.216;(4)5;注意:规范学生的书写格式。5的立方根是;六、想一想表示的立方根,那么等于什么?呢?类比平方根()2=a(a0)和得出结论:=,=例2 求下列各式的值。(1);(2);(3);(4)注意:要使学生理解各式的读法、意义、然后引导学生计算各式的值。随堂练习:P39 1,2小结:1)内容小结立方根的概念、性质、表示方法、计算方法;立方根和平方根有什么区别?2)方法归纳根据乘方与开方的互逆关系,求一个数的立方根。作业:P39 习题2、5试一试