1、配方法教学目标:1、会用开平方法解形如(x+m)2=n (n0)的方程;2、理解配方法,会用配方法解简单的数字系数的一元二次方程;3、体会转化的数学思想,用配方法解一元二次方程的过程。教学程序:一、复习:1、解下列方程:(1)x2=9(2)(x+2)2=162、什么是完全平方式?利用公式计算:(1)(x+6)2(2)(x)2注意:它们的常数项等于一次项系数一半的平方。3、解方程:(梯子滑动问题)x2+12x15=0二、新授:1、引入:像上面第3题,我们解方程会有困难,是否将方程转化为第1题的方程的形式呢?2、解方程的基本思路(配方法)如:x2+12x15=0转化为 (x+6)2=51两边开平方
2、,得 x+6=x1=6x2=6(不合实际)因此,解一元二次方程的基本思路是将方程转化为(x+m)2=n 的形式,它的一边是一个完全平方式,另一边是一个常数,当n0 时,两边开平方便可求出它的根。3、配方:填上适当的数,使下列等式成立:(1)x2+12x+=(x+6)2(2)x212x+=(x )2(3)x2+8x+=(x+ )2从上可知:常数项配上一次项系数的一半的平方。4、讲解例题:例1:解方程:x2+8x9=0分析:先把它变成(x+m)2=n (n0)的形式再用直接开平方法求解。解:移项,得:x2+8x=9配方,得:x2+8x+42=9+42(两边同时加上一次项系数一半的平方)即:(x+4
3、)2=25开平方,得:x+4=5即:x+4=5,或x+4=5所以:x1=1,x2=95、配方法:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二闪方程的方法称为配方法。三、巩固练习:P50,随堂练习:1四、小结:(1)什么叫配方法?(2)配方法的基本思路是什么?(3)怎样配方?五、作业:P50习题2.3 1、2六、教学后记(第二课时)教学目标:1、利用配方法解数字系数的一般一元二次方程。2、进一步理解配方法的解题思路。教学重点、难点:用配方法解一元二次方程的思路;给方程配方。教学程序:一、复习:1、什么叫配方法?2、怎样配方?方程两边同加上一次项系数一半的平方。3、解方程:(1)x
4、2+4x+3=0(2)x24x+2=0二、新授:1、例题讲析:例3:解方程:3x2+8x3=0分析:将二次项系数化为1后,用配方法解此方程。解:两边都除以3,得: x2+x1=0移项,得:x2+x = 1配方,得:x2+x+()2= 1+()2(方程两边都加上一次项系数一半的平方) (x+)2=()2即:x+=所以x1=,x2=32、用配方法解一元二次方程的步骤:(1)把二次项系数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项。(3)方程两边同时加上一次项系数一半的平方。(4)用直接开平方法求出方程的根。3、做一做: 一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m
5、)与时间t(s)满足关系: h=15 t5t2小球何时能达到10m高?三、巩固:练习:P51,随堂练习:1四、小结:1、用配方法解一元二次方程的步骤。(1)化二次项系数为1;(2)移项;(3)配方:(4)求根。五、作业:P33,习题2.4 1、2六、教学后记(第三课时)教学目标:1、经历到方程解决实际,问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,培养学生数学应用的意识和能力;2、进一步掌握用配方法解题的技能教学重点、难点:列一元二次方程解方程。教学程序:一、复习:1、配方:(1)x23x+ =(x )2(2)x25x+ =(x )22、用配方法解一元二次方程的步骤是
6、什么?3、用配方法解下列一元二次方程?(1)3x21=2x(2)x25x+4=0二、引入课题:我们已经学习了用配方法解一元二次方程,在生产生活中常遇到一些问题,需要用一元二次方程来解答,请同学们将课本翻到54页,阅读课本,并思考:三、出示思考题:1、如图所示:(1)设花园四周小路的宽度均为x m,可列怎样的一元二次方程?(16-2x) (12-2x)= 1612(2)一元二次方程的解是什么?x1=2 x2=12(3)这两个解都合要求吗?为什么?x1=2合要求, x2=12不合要求,因荒地的宽为12m,小路的宽不可能为12m,它必须小于荒地宽的一半。2、设花园四角的扇形半径均为x m,可列怎样的一元二次方程? x2=1216(2)一元二次方程的解是什么?X1=5.5X25.5(3)合符条件的解是多少?X1=5.53、你还有其他设计方案吗?请设计出来与同伴交流。(1)花园为菱形? (2)花园为圆形(3)花园为三角形? (4)花园为梯形四、练习:P56随堂练习五、小结:1、本节内容的设计方案不只一种,只要合符条件即可。2、设计方案时,关键是列一元二次方程。3、一元二次方程的解一般有两个,要根据实际情况舍去不合题意的解。六、作业:P56,习题2.5,1、2七、教学后记: