1、21.3 二次函数与一元二次方程【知识与技能】1.体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法;2.理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数图象特征.【过程与方法】经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想.【情感态度】培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验探究的乐趣和学会用辨证的观点看问题的思维品质.【教学重点】经历“类比观察发现归纳”而得出二次函数与一元二次方程的关系的探索过程.【教学难点】准确理解二次函数与一元二
2、次方程的关系.一、情景导入,初步认知我们学习了一元一次方程kxb0(k0)和一次函数ykxb(k0)后,讨论了它们之间的关系.当一次函数中的函数值y0时,一次函数ykxb就转化成了一元一次方程kxb0,且一次函数ykxb(k0)的图象与x轴交点的横坐标即为一元一次方程kxb0的解.现在我们学习了一元二次方程ax2bxc0(a0)和二次函数yax2bxc(a0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.【教学说明】让学生通过对旧知识的回顾及对新知识的思考,梳理旧知识,起到承上启下之效,同时通过老师的引导,培养学生的形成解决一类问题的通用方法的思维品质.二、思考探究,获取新知1.
3、观察二次函数y=x2+3x+2的图象,并回答下列问题.(1)每个图象与x轴有几个交点?(2)二次函数yax2bxc的图象与x轴交点坐标与一元二次方程ax2bxc=0的根有什么关系?【教学说明】引起学生的认知冲突,激发学生的求知欲望,大胆猜想,通过交流寻求解决类似问题的方法.【归纳结论】一元二次方程ax2+bx+c=0.当0时有实数根,这个实数根就是对应二次函数yax2bxc的值等于0时自变量x的一个值,即二次函数的图象与x轴一个交点的横坐标.2.用图象法求一元二次方程x2+2x-1=0近似解.(精确到0.1)由图象可知,方程有两个实数根,一个在-3和-2之间,另一个在0和1之间.先求位于-3和
4、-2之间的根,由图象可估计这个根是-2.5或-2.4,利用计算器进行探索,见下表:观察上表可以发现,当x分别取-3和-2时,对应的y由正变负,可见在-3和-2之间肯定有一个x使y=0,即方程的一个根.题目要求精确到0.1,当x=-2.4时,y=-0.04比y=0.25更接近0,所以选x=-2.4.因此,方程x2+2x-1=0在-3和-2之间精确到0.1的根为x=-2.4.请仿照上面的方法,求出方程精确到0.1的另一个根.3.方程x2+2x-1=0的近似解还可以这样求:分别画出函数y=x2,y=-2x+1的图象,如图,它们交点A,B的横坐标就是方程x2+2x-1=0的根.【教学说明】引导学生讨论
5、,交流,发表不同意见,并进行归纳.三、运用新知,深化理解1.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是( B )A.ac0B.方程ax2+bx+c=0的两根是x1=-1,x2=3C.2a-b=0D.当x0时,y随x的增大而减小【分析】根据抛物线的开口方向,对称轴,与x轴、y轴的交点,逐一判断.解:A.抛物线开口向下,与y轴交于正半轴,a0,c0,ac0,故本选项错误;B.抛物线对称轴是x=1,与x轴交于(3,0),抛物线与x轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C.抛物线对称轴为x=1,2a+
6、b=0,故本选项错误;D.抛物线对称轴为x=1,开口向下,当x1时,y随x的增大而减小,故本选项错误.故选B.2.如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=( C )A.-1.6 B.3.2C.4.4 D.以上都不对【分析】根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图形和已知条件即可求出x2.解:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足23=x1+x2,而x1
7、=1.6,x2=4.4. 故选C.3.根据下列表格的对应值:判断方程ax2+bx+c=0(a0,a,b,c为常数)的一个解x的范围是( C )A.8x9 B.9x10C.10x11 D.11x12【分析】根据表格知道8x12,y随x的增大而增大,而-0.3801.2,由此即可推出方程ax2+bx+c=0(a0,a,b,c为常数)的一个解x的范围.解:依题意得当8x12,y随x的增大而增大,而-0.3801.2,方程ax2+bx+c=0(a0,a,b,c为常数)的一个解x的范围是10x11.故选C.【教学说明】学生独立完成3个小题,小组交流所做结果,练习巩固,加深理解.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题21.3”中第2、4、8题.本节课主要是向学生渗透两种思想:函数与方程互相转化的思想;数形结合思想.三种题型:函数图象与x轴交点的横坐标、方程根的个数、函数图象的交点坐标.