1、第二十四章 圆【学习目标】1、了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理2、探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线3、进一步认识和理解正多边形和圆的关系和正多边的有关计算4、熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算【学习过程】一、 自主学习:1、在同圆或等圆中的弧、弦、圆心角、有什么关系?一条弧所对的圆周角和它所对的圆心角有什么关系?2、垂径定理的内容
2、是什么?推论是什么?3、点与圆有怎样的位置关系?直线和圆呢?圆和圆呢?怎样判断这些位置关系?请你举出这些位置关系的实例?4、圆的切线有什么性质?如何判断一条直线是圆的切线?5、正多边形和圆有什么关系?你能用正多边形和等分圆周设计一些图案吗?6、举例说明如何计算弧长、扇形面积、圆锥的侧面积和全面积?二、 典型例题:例1:如图,P是O外一点,PAB、PCD分别与O相交于A、B、C、D.(1)PO平分BPD;(2)AB=CD;(3)OECD,OFAB;(4)OE=OF.从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明,与同伴交流. 例2:如图,AB是O的弦,交AB于点C,过点B的直线交
3、OC的延长线于点E,当时,直线BE与O有怎样的位置关系?并证明你的结论例3:(1)如图,圆心角都是90的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BC,则圆中阴影部分的面积为( )A B C2 D4 (2)如图,在RtABC中,C=90,AC=1,BC=2以边BC所在直线为轴,把ABC旋转一周,得到的几何体的侧面积是 A B2 C D2 三、 巩固练习:见教材四、 总结反思:【达标检测】1、下列命题中,正确的是( )顶点在圆周上的角是圆周角;圆周角的度数等于圆心角度数的一半;的圆周角所对的弦是直径;不在同一条直线上的三个点确定一个圆;同弧所对的圆周角相等ABCD2、右
4、图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是A外离 B相交 C外切 D内切3、(中考题)如图,小红同学要用纸板制作一个高4cm,底面周长是6cm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A)12cm2(B)15cm2(C)18cm2(D)24cm24、如图,已知AOB=30,M为OB边上任意一点,以M为圆心,2cm为半径作M,当OM=_cm时,M与OA相切5、如图,AB是O的弦,半径OA=20cm,AOB=1200,则AOB的面积是 。6、如图,A、B、C、两两不相交,且半径都是0.5cm,则图中三个扇形(即阴影部分的面积)之和为 。 (第4题图) (第5题图) (第6题图)7、教材复习题。【拓展创新】复习题【布置作业】复习题