1、21 函数和它的表示法(第二课时)教学目标1、了解函数的三种表示法:(1)解析法;(2)列表法;(3)图象法2、理解函数值的概念 3、会在简单情况下,根据函数的表示式求函数的值教学重点与难点教学重点:函数的表示法,是今后进一步学习其他函数,以及运用函数模型解决实际问题的基础,因此函数的有关概念是本节的重点 教学难点:用图象来表示函数关系涉及数形结合,学生理解它需要一个较长且比较具体的过程,是本节教学的难点教学方法观察、比较、合作、交流、探索.教学过程教学过程分以下6个环节:创设情境 问题1 小明的哥哥是一名大学生,他利用暑假去一家公司打工,报酬按16元时计算设小明的哥哥这个月工作的时间为时,应
2、得报酬为元,填写下表:工作时间(时)15101520报酬(元)然后回答下列问题:(1)在上述问题中,哪些是常量?哪些是变量?(常量16,变量、)(2)能用的代数式来表示的值吗?(能,=16)教师指出:在这个变化过程中,有两个变量,对的每一个确定的值,都有唯一确定的值与它对应问题2 跳远运动员按一定的起跳姿势,其跳远的距离(米)与助跑的速度(米秒)有关根据经验,跳远的距离(010.5) 然后回答下列问题:(1)在上述问题中,哪些是常量?哪些是变量?(常量0.085,变量、) (2)计算当分别为7.5,8,8.5时,相应的跳远距离是多少(结果保留3个有效数字)? (3)给定一个的值,你能求出相应的
3、的值吗? 教师指出:在这个变化过程中,有两个变量,对的每一个确定的值,都有唯一确定的值与它对应本环节设计的意图:通过对两个学生熟悉的问题的讨论,既巩固了上一节课中常量、变量的概念,又为本节课学习函数的概念作好准备探究新知函数的表示法解析法:问题1、2中,=16和这两个函数用等式来表示,这种表示函数关系的等式,叫做函数解析式,简称函数式用函数解析式表示函数的方法也叫解析法列表法:有时把自变量的一系列值和函数的对应值列成一个表这种表示函数关系的方法是列表法如表(图7-2)表示的是一年内某城市月份与平均气温的函数关系月份123456789101112平均气温()3.85.19.315.420.224
4、.328.628.023.317.112.26.3图象法: 我们还可以用法来表示函数,解析法、图象法和列表法是函数的三种常用的表示方法教师指出:(1)解析法、列表法、图象法是表示函数的三种方法,都很重要,不能有所偏颇尤其是列表法、图象法在今后代数、统计领域的学习中经常用到,教学中应引起学生的重视(2)对于列表法,图象法,如何表示两个变量之间的函数关系,学生可能不太容易理解,教学中可以用课本表7-2和图7-1来具体说明它们表示两个变量之间的函数关系的方法(3)函数值概念与自变量对应的值叫做函数值,它与自变量的取值有关,通常函数值随着自变量的变化而变化若函数用解析法表示,只需把自变量的值代人函数式,就能得到相应的函数值例如对于函数=16,当=5时,把它代人函数解析式,得=165=80(元)=80叫做当自变量=5时的函数值4作业 课本P34练习第1,2,35、课后反思: