资源描述
分式方程
疑难分析
1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验,将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.
2.分式方程的应用主要就是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系式的代数式是分式而已.
一般地,列分式方程解应用题的步骤:
(1)审题,理解题意;
(2)设未知数;
(3)找出相等关系;
(4)解这个分式方程;
(5)检验,看方程的解是否满足方程和符合题意;
(6)写出答案.
例题选讲
例1 解下列方程:
(1) ;(2).
解:(1)原方程可变为:(x+2)(x-3)=(x+2)(x+3)
x2-x-6=x2+5x+6
6x=-12
∴x=-2
检验:当x=-2时,公分母(x+3)(x-3)=-5≠0.
∴原方程的解为x=-2.
(2)原方程可变为:,方程两边同乘以2x-5得:
x-5-(2x-5)=0
解这个整式方程得:x=0
检验:把x=0代入最简公分母:2x-5=-5 ≠0.
∴x=0是原方程的根.
评注:检验是解分式方程不可缺少的一步,在检验时,只需把整式方程的解代入最简公分母判定它是否为零.
例2 A、B两位采购员同去一家饲料公司购买两次饲料,两次饲料的价格有变化,但两位采购员的购贷方式不同,其中,采购员A每购买1000千克,购贷员B每次用去800元,而不管购买饲料多少,问选用谁的购贷方式合算?
解:设两次购买的饲料单价分别为每1千克m元和n元(m>0,n>0,m≠n),购货员A两次购买饲料的平均单价为(元/千克).购货员B两次购买饲料的平均单价为(元/千克).
而>0.∴.
也就是说,购货员A所购饲料的平均单价高于购货员B所购饲料的平均单价,所以选用购货员B的购买方式合算.
评注:此例告诉我们,学会应用数学知识去处理日常生活中的经济问题,可以帮助我们获得较好的经济收益.
例3:一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的……第n次倒出水量是升的……按照这种倒水的方法,这1升水经多少次可以倒完?
解:倒n次水的总倒水量为①
根据分式的减法法则:反过来有②
利用②可以把①改写成③
合并③中的相反数,得,即倒n次水的总倒水量为:=(升)
评注:你可能会想到通过实验探寻问题的答案,但是实验中要精确地测量倒出水量,当倒出水量很小时测量的难度非常大,我们能否用数学方法替代实验解决这个问题呢?可以发现,按这种方法倒水,随着倒水次数n的不断增加,总倒水量也不断增加,然而,不论倒水次数n有多大,总倒水量总小于1,因此容器中的1升水是倒不完的,这样,我们就用数学方法分析解决了上面的问题.
基础训练
一、选一选(请将唯一正确答案的代号填入题后的括号内)
1.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇,若同向而行,则b小时甲追上乙,那么甲的速度是乙的速度的( ).
(A) (B) (C) (D)
2.要把分式方程化成整式方程,方程两边需要同时乘以( ).
(A)2x-4 (B) x (C)2(x-2) (D)2x(x-2)
3.方程的解是( ).
(A)1 (B)-1 (C)±1 (D)0
4.把分式方程的两边同时乘以(x-2),约去分母得( ).
(A)1-(1-x)=1 (B)1+(1-x)=1
(C)1-(1-x)=x-2 (D)1+(1-x)=x-2
5.某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务,设原计划每天固沙造林x公顷,根据题意列方程正确的是( ).
(A) (B)
(C) (D)
二、填一填
6.李明计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书.
解题方案
设李明原计划平均每天读书x页,用含x的代数式表示:
(1)李明原计划读完这本书需用 天;
(2)改变计划时,已读了 页,还剩 页;
(3)读了5天后,每天多读5页,读完剩余部分还需 天;
(4)根据问题中的相等关系,列出相应方程 .
7.一根蜡烛在凸透镜下成一实像,物距u,像距v和凸透镜的焦距f满足关系式:.若f=6厘米v=8厘米,则物距u= 厘米.
8.已知若(a、b都是整数),则a+b的最小值是 .
9.已知,则 .
10.已知,则分式的值为 .
11.某商店经销一种商品,由于进货价降低了6.4%,使得利润提高了8%,那么原来经销这种商品的利润率是 %.
三、做一做
12.解方程
(1);
(2).
13.观察图示的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:
①
②
③
④
……
(1) 写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;
(2)猜想并写出与第n个图形相对应的等式.
14.阅读下面对话:
小红妈:“售货员,请帮我买些梨.”
售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”
小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.
试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.
四、试一试
15.甲工人与乙工人生产同一种零件,甲每小时比乙多生产8个,现在要求甲生产出168个这种零件,要求乙生产出144个这种零件,他们两人谁能先完成任务呢?
16. 3 分式方程
一、1.C 2.D 3.D 4.D 5.B
二、6.(1);(2)5x ,200-5x;(3);(4)
7.24 8.19 9. 10. 11.17
三、12.(1)3;(2)无解 13.(1);(2)
14.梨的单价为4元/千克,苹果的单价为6元/千克.
四、当乙每小时生产的零件多余48个,则乙先完成任务,如果乙每小时恰好生产48个零件,则两人同时完成任务;如果乙每小时生产的零件少于48个,则甲先完成任务.
展开阅读全文