1、海南省万宁市思源实验学校八年级数学上册第十一章第2节三角形全等的判定第三课时教案 新人教版教学过程 提出问题,创设情境 1复习:(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边 (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? 三种:定义;SSS;SAS 2在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢? 导入新课 问题1:三角形中已知两角一边有几种可能? 1两角和它们的夹边 2两角和其中一角的对边 问题2:三角形的两个内角分别是60和80,它们的夹边为4cm,你能画一个三角形同时满
2、足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律? 将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”) 问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个ABC,使A=A、B=B、AB=AB呢? 先用量角器量出A与B的度数,再用直尺量出AB的边长 画线段AB,使AB=AB 分别以A、B为顶点,AB为一边作DAB、EBA,使DAB=CAB,EBA=CBA 射线AD与BE交于一点,记为C 即可得到ABC 将ABC与ABC重叠,发现两三角形全等
3、 两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”) 思考:在一个三角形中两角确定,第三个角一定确定我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 探究问题4:如图,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗? 证明:A+B+C=D+E+F=180 A=D,B=E A+B=D+E C=F 在ABC和DEF中 ABCDEF(ASA) 两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”) 例如下图,D在AB上,E在AC上,AB=AC,B=C求证:
4、AD=AE 分析AD和AE分别在ADC和AEB中,所以要证AD=AE,只需证明ADCAEB即可 证明:在ADC和AEB中 所以ADCAEB(ASA) 所以AD=AE 随堂练习 (一)课本P99练习1、2 (二)补充练习图中的两个三角形全等吗?请说明理由 答案:图(1)中由“ASA”可证得ACDACB图(2)由“AAS”可证得ACEBDC 课时小结 至此,我们有五种判定三角形全等的方法: 1全等三角形的定义 2判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS) 推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径 作业 1课本习题5、6、11题 课后作业: 板书设计 1123 三角形全等的条件(三) 一、两角一边 二、三角形全等的条件 1两角及其夹边对应相等的两三角形全等(ASA)2两角和其中一角的对边对应相等的两三角形全等(AAS)