1、22.1.3 二次函数y=a(x-h)2+k的图象和性质第3课时 二次函数y=a(x-h)2+k的图象和性质 教学目标: 1使学生理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系。2会确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标。3让学生经历函数y=a(xh)2k性质的探索过程,理解函数y=a(xh)2k的性质。重点难点:重点:确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系,理解函数y=a(xh)2k的性质是教学的重点。难点:正确理解函数y=a(xh)2k的图象与函数y=ax2的图象
2、之间的关系以及函数y=a(xh)2k的性质是教学的难点。教学过程:一、提出问题1函数y=2x21的图象与函数y=2x2的图象有什么关系? (函数y=2x21的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2函数y=2(x1)2的图象与函数y=2x2的图象有什么关系? (函数y=2(x1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图26.2.3)3函数y=2(x1)21图象与函数y=2(x1)2图象有什么关系?函数y=2(x1)21有哪些性质?二、试一试你能填写下表吗?y=2x2 向右平移的图象1个单位y=2(x1)2向上平移1个单位y=2(x1)21
3、的图象开口方向向上对称轴y轴顶 点(0,0) 问题2:从上表中,你能分别找到函数y=2(x1)21与函数y=2(x1)2、y=2x2图象的关系吗? 问题3:你能发现函数y=2(x1)21有哪些性质? 对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识; 函数y2(x1)21的图象可以看成是将函数y=2(x1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。 当x1时,函数值y随x的增大而减小,当x1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。三、做一做问题4:在图2623中,你能
4、再画出函数y=2(x1)22的图象,并将它与函数y=2(x1)2的图象作比较吗? 教学要点 1在学生画函数图象时,教师巡视指导; 2对“比较”两字做出解释,然后让学生进行比较。 问题5:你能说出函数y=(x1)22的图象与函数y=x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗? (函数y(x1)22的图象可以看成是将函数y=x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)四、课堂练习: P13练习1、2、3、4。 对于练习第4题,教师必须提示:将3x26x8配方,化为练习第3题中的形式,即 y=3x26x8 =
5、3(x22x)8 =3(x22x11)8 =3(x1)211五、小结1通过本节课的学习,你学到了哪些知识?还存在什么困惑?2谈谈你的学习体会。六、作业: 1巳知函数yx2、yx21和y(x1)21(1)在同一直角坐标系中画出三个函数的图象; (2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明:分别通过怎样的平移,可以由抛物线yx2得到抛物线yx21和抛物线y(x1)21;(4)试讨论函数y(x1)21的性质。2已知函数y6x2、y6(x3)23和y6(x3)23。(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明,分别通过怎样的平移,可以由抛物线y6x2得到抛物线y6(x3)23和抛物线y6(x3)23;(4)试讨沦函数y6(x3)23的性质;3不画图象,直接说出函数y2x25x7的图象的开口方向、对称轴和顶点坐标。4函数y2(x1)2k的图象与函数y2x2的图象有什么关系?